
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of a doctoral thesis by

Bilgehan Uygar Oztekin

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Prof. Vipin Kumar

Name of Faculty Adviser

Signature of Faculty Adviser

Date

GRADUATE SCHOOL



Usage Meets Link Analysis: Towards Improving Intranet and Site

Specific Search via Usage Statistics

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Bilgehan Uygar Oztekin

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Prof. Vipin Kumar, Adviser

April 2005



c© Bilgehan Uygar Oztekin 2005



i

Acknowledgments

First, I would like to express gratitude to my academic adviser, Prof. Vipin Kumar, for his

continuous encouragement, motivation, patience, and financial support throughout my graduate

studies; without his support and guidance, this thesis would not be possible. I would like to thank

Prof. George Karypis, for guiding me during various projects and for providing a novel perspective

whenever I needed. I would also like to thank Prof. Jaideep Srivastava and Prof. Gediminas

Adomavicius, for their willingness to serve on my Ph.D. committee as well as their valuable advice

and suggestions.

The Computer Science Department and Army High Performance Computing Research Center at

the University of Minnesota have provided a wonderful research environment. I wish to thank many

of my fellow colleagues, especially Dr. Eui-Hong Han, Levent Ertoz, Eric Eilertson, Aysel Ozgur,

and Dr. Pang-Ning Tan who provided valuable feedback and support in many occasions.

I would also like to extend my sincere thanks to all my friends who have assisted me in so

many ways during my studies at the University of Minnesota. Special thanks to Ismail Guler,

Emin Aklik, Bayram Tekin, Aysel Ozgur, Levent Ertoz, Irene Moulitsas, Cetin Urtis, Pinar Tutus,

Mohac Tekmen, Pinar Tekmen, and Emre Celebi for making my journey through graduate school a

wonderful experience.

Lastly, I owe special gratitude to my parents, Dr. Erbil and Ayse Oztekin, and my extended

family for offering me examples to look up to and for providing valuable perspectives, guidance,

and support throughout my life. I would especially like to thank my aunt Dr. Fatos Vural, and my

uncles Dr. Faruk Yarman, Dr. Siddik Yarman, and Dr. Tolga Yarman, with whom I had countless

hours of discussions and joy, which, I believe, played a crucial role in my formation. I would also

like to thank my sisters Ozde and Ilke, and my cousins Dervis Vural and Evren Yarman, who are

also pursuing graduate studies in this part of the globe, for providing me a closer support.



ii

Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Internet and Web Search Engines, a Brief History . . . . . . . . . . . . . . . . . 3

1.2 Related Work in Link Analysis and Usage Statistics . . . . . . . . . . . . . . . . 7

1.3 Chapter Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Ranking in Search Engines 11
2.1 General Ranking Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 TF-IDF based Ranking in Vector-Space Model . . . . . . . . . . . . . . . . . . 11

2.1.2 Bigrams, Trigrams, n-Grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Stemming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Additional Information Available to Search Engines . . . . . . . . . . . . . . . . 15

2.2 Leading Link Analysis Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 PageRank (PR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 HITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Proposed Usage Based Ranking Methods . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Usage Aware PageRank (UPR) . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 HITS Modified via Usage Statistics (UHITS) . . . . . . . . . . . . . . . . . . . 22

2.3.3 The Näıve Approaches: Counts and MCounts . . . . . . . . . . . . . . . . . . . 23

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Infrastructure 25
3.1 Site Mirroring Tool (UMirror) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Processing the Local Directory Structure . . . . . . . . . . . . . . . . . . . . . . 29



iii

3.3 Calculating the Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Search Engine (USearch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Experimental Results 36
4.1 Characteristics of the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Comparing PR vs UPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Effects of Usage Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Effects of Modified Counting Scheme . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Pairwise Comparison of Quality Measures . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Query Dependent Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Discussions and Future Directions 77
5.1 Quality Signals and Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Usage Signals and Web Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Usage Based Spamming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Concluding Remarks 81
6.1 Usage Information in Site Specific/Intranet Search . . . . . . . . . . . . . . . . . 81

6.1.1 UPR, a Promising Signal for Intranet Search . . . . . . . . . . . . . . . . . . . 82

Bibliography 83



LIST OF FIGURES iv

List of Figures

3.1 Interaction between modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 USearch main page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 USearch user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Log UPR scores of pages using simple counting scheme for different emphasis values

between static and usage based graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Log UPR scores of pages using modified counting scheme for different emphasis values

between static and usage based graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Comparing UPR using simple counts vs. UPR using modified counts . . . . . . . . . . 45

4.5 Comparing UPR using simple counts vs. UPR using modified counts, focusing on top

and bottom 500 pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Comparing scores: Pearson correlations . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Comparing ordering: Spearman correlations . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Comparing differences scores: Second norm of the difference vector . . . . . . . . . . . 50

4.9 Comparing scores: Dot produtcs (cosine similarity) . . . . . . . . . . . . . . . . . . . . 51

4.10 Distribution of PageRank scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.11 Distribution of UPR(0.5, 0.5) scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.12 Distribution of UPR(0.75, 0.75) scores . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.13 Distribution of Counts scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.14 Distribution of MCounts scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.15 Distribution of HITS authority scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.16 Distribution of HITS hub scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.17 Distribution of UHITS(0.75) authority scores . . . . . . . . . . . . . . . . . . . . . . . 61

4.18 Distribution of UHITS(0.75) hub scores . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.19 Comparing UPR(0.25) and PR scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.20 Comparing UPR(0.75) and MCounts scores . . . . . . . . . . . . . . . . . . . . . . . . 64



LIST OF FIGURES v

4.21 Comparing PR and HITS authority scores . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.22 Comparing UPR(0.25) and UHITS(0.25) authority scores . . . . . . . . . . . . . . . . . 66

4.23 Comparing UPR(0.75) and UHITS(0.75) hub scores . . . . . . . . . . . . . . . . . . . 67

4.24 Comparing Counts and UHITS(0.50) hub scores . . . . . . . . . . . . . . . . . . . . . 69

4.25 Comparing Counts and MCounts scores . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.26 Comparing Counts and MCounts ordering . . . . . . . . . . . . . . . . . . . . . . . . . 71



LIST OF TABLES vi

List of Tables

1.1 Selected events and milestones in the history of the Internet and Web search engines . . 4

1.2 A brief history of ranking approaches used in Web search engines . . . . . . . . . . . . 6

2.1 Key differences between proposed usage based ranking methods . . . . . . . . . . . . 18

4.1 Average position of selected documents for different methods under each evaluation set

(smaller is better). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



Chapter 1 1

Chapter 1

Introduction

In recent years, link analysis, PageRank algorithm in particular, played a crucial role in improving

Web scale search, and became one of the key components in ranking pages in leading search engines

such as Google. Most of the work in the area of link analysis relies primarily on the static hyperlink

structure, and to a lesser degree on the content of the pages. Both the link structure and the

content of the pages are provided by the authors of the pages. In some sense, almost all previous

link analysis approaches sees the world from the author’s or site administrator’s point of view.

Another perspective that is often ignored is the users’ perspective and preferences while traversing

the pages/links. Intuitively, pages that are visited frequently or links that are traversed heavily

are more important than the ones visited/traversed rarely. However, most of the traditional link

analysis approaches make no or very little distinction between the two. Often, all pages/links are

treated equally, or weighted via simple heuristics such as position and approximated visibility of the

link within the page, or similarity of the anchor text to the query in the case of focused crawlers.

Search within a site, an intranet, or a subset of a site is quite different than Web scale search,

and is important in various contexts. Many organizations including businesses, and governmental

and educational institutions have substantial amount of information behind firewalls, inaccessible

to general purpose search engines. Some services such as digital libraries, although transparently

available to a subset of the users on the Internet, are not available to general public (IP based access

restrictions, password protected portions etc.). There are also subsets of sites disallowed to web

crawlers via the Robots Exclusion Protocol (robots.txt) [27]. These portions may still be important

internally and worth indexing and searching within the organization. Specific search capabilities

for a particular domain or subset of a site may also be desirable even though the pages may be

publicly available and indexed by general purpose engines (timely updates, focused/compact search,

additional capabilities, different vocabulary/term weighting, alternative ranking methods etc.). The



Chapter 1 2

need for a reliable searching method for these situations is an important need for the users of these

pages, especially when the portion of interest is not accessible by Web scale search engines. The

solution is often a site specific search engine, accompanied by a site level portal, both maintained

by the organization itself.

Link analysis has been a major component in Web scale search. However, due to unavailability

of global scale statistics such as linkage information and global scores, application of link analysis

techniques is often less accurate on a site level. This is perhaps a minor issue for intranet search,

in which pages are rarely linked from outside, but it is an important issue for searching within

a domain or subset of a domain where substantial interaction from pages inside and outside may

exist, suggesting that global information may offer a more accurate view. A related problem shared

by both intranet and site specific search is that, on a site level or within an intranet, trivial and

effective global scale filtering approaches (e.g. deemphasizing links within the site vs. links across

sites, running the algorithm first on domain level, weighting the importance of domains, and then

focusing on the page level etc.) are not easily applicable. On the other hand, site specific or intranet

search engines have an important information source that is not readily available to Web scale search

engines: Extensive usage information on the site level. This information can be easily extracted from

usage logs and can be used to build a usage based graph in conjunction with the static linkage graph.

Both link and page hit statistics, as well as statistics on how many different IPs (a crude identifier

for unique users or user groups) has accessed a particular link/page in a given time window can

be obtained. This information can complement the link structure, acting as a valuable signal and

filtering mechanism.

Incorporation of usage information into link analysis and the overall ranking methods has another

potential benefit: increased resistance against spamming. During the early days of Web search

engines, one could boost the score of a page by modifying the page alone (adding/removing keywords,

modifying the frequencies). In recent search engines using link analysis, in order to boost the score of

a page considerably, one needs to boost the link structure around that page, requiring modification

of a number of pages as opposed to a single page. Hence, link analysis is considered to offer

relative resistance against spamming or voluntary/involuntary perturbations, compared to early

search engines. If usage augmented link analysis algorithms are used, not only pages/links must

be created/modified around the page that one desires to boost, but also, these pages/links should

have relatively high usage, potentially offering an additional, valuable signal against spamming. The

other side of the coin is that, by introducing a new type of signal (link analysis), a new door that

can be abused has been opened (link based spamming). Similarly, adding usage information as a

signal, opens up a new, potential way of perturbing the results (usage based spamming). Note that



1.1 Internet and Web Search Engines, a Brief History 3

spamming is still a common problem in search engines. For every refinement or signal that one may

introduce, new ways of abusing the scoring mechanism can be found and exploited. The aim, in

general, is to make it increasingly difficult and expensive to achieve a significant effect, reducing the

incentive for spamming. Usage information can be one of the valuable signals in this continuous

process.

Intuitively, as well as supported by a study by Fagin et al. [13], site specific and intranet search

is relatively spam free, as there is no compelling incentive for perturbing the results within a single

organization. For this particular domain, usage information may offer a reliable signal to improve

the ranking quality without concerns for usage based spamming. This is particularly important

when no global linkage information is available, or when the corpus is poorly linked compared to the

Web. This thesis proposes and investigates a number of approaches incorporating usage statistics

for site specific and intranet search. Some of these techniques are directly usage based, and some

incorporate usage statistics into leading link analysis approaches: PageRank, and HITS. One of the

ranking methods in particular, Usage Aware PageRank, is promising and has a number of desirable

features (discussed in Section 2.3.1).

The remainder of this chapter is organized as follows: Section 1.1 gives a brief history of the

Internet and Web scale search engines, Section 1.2 provides selected related work in the area of link

analysis and usage statistics, and finally, Section 1.3 summarizes the overall layout of the remaining

chapters.

1.1 Internet and Web Search Engines, a Brief History

Roots of the Internet can be traced back to early 60s. Table 1.1 provides a brief overview of

some of the important events and milestones in the history of the Internet and search engines

(sources: [46], [8], [53]). One of the first papers on packet switching theory has been published

in 1961 by Kleinrock [26]. The Transmission Control Protocol (TCP) is first introduced in 1974,

and, later, revised to form the TCP/IP protocol, making it feasible to connect various disconnected

networks that were being formed all around the World. The ARPANET, developed in the late 60s

and early 70s, later on switching to the TCP/IP protocol, gradually connected different networks,

forming the basis of the current Internet. In the early 70s, ARPANET had only a few nodes/hosts.

However, this number steadily increased to a few dozens, and then, to hundreds. As a result of this

constant expansion, finding hosts was becoming increasingly difficult. This problem is addressed by

the introduction of Domain Name System (DNS) in 1974, organizing machines into domains and

mapping host names onto IP addresses. Various protocols that are integral parts of the Internet



1.1 Internet and Web Search Engines, a Brief History 4

60s Early developments in networking

1961 First paper on packet switching theory

1965 ARPA sponsors study on cooperative network of time sharing computers

1969 ARPANET is commissioned by DoD for networking research

70s ARPANET, limited number of nodes

1970 AlohaNet, the first packet based wireless network is operational

First cross-country link connects UCLA and BBN at 56kbps

1971 15 nodes and 23 hosts, email is invented

1972 Telnet specification. France is building counterpart of ARPANET

1973 File Transfer Protocol (FTP) specification

1974 Transmission Control Protocol (TCP) specification

1975 First ARPANET mailing list, satellite links across two oceans

1977 Mail specification

1978 USENET (news groups) is established

80s Continuous expansion, transition to TCP/IP, merging of networks

1980 ARPANET grinds to a halt due to an accidental virus

1982 Norway connects through TCP/IP

EUnet provides email and USENET services in parts of Europe

1984 1,000 hosts, Domain Name System (DNS)

1987 10,000 hosts

1988 Internet Relay Chat (IRC)

Regional networks continues to appear and join the Internet

1989 100,000 hosts

Early 90s Transition to WWW, countries/networks continue to join,

exponential growth, need for search engines

1990 ARPANET ceases to exist. First commercial dial-up ISP is operational.

1991 World Wide Web by CERN, Gopher by University of Minnesota

PGP (Pretty Good Privacy) released by Zimmerman.

1992 1,000,000 hosts

1993 Mosaic, the first widespread Web browser, becomes immediately popular.

WWW Wonderer, first widely acclaimed Web robot

1994 Galaxy, the first searchable directory. Lycos indexes 54K documents.

Late 90s Search engine boom

1995 Infoseek(Feb) and Metacrawler(June) launched.

Altavista(Dec) is launched and has instant popularity.

1996 Inktomi founded. Hotbot claims to have the ability to index 10M pages/day

1997 Ask Jeeves, Northern Light

1998 Open Directory Project, Page and Brin introduces Google(Sep), MSN search

Directhit uses click information in ranking.

1999 Fast search indexes 200M Web pages.

Table 1.1. Selected events and milestones in the history of the Internet and Web search engines



1.1 Internet and Web Search Engines, a Brief History 5

experience today were also introduced in 70s (Telnet, FTP, Mail, USENET).

By mid-80s the number hosts reached 1000; by late 80s, it reached 100,000; and by early 90s,

the number of estimated hosts broke 1,000,000. The number of local networks all around the world

steadily increased as well during this period. A portion of these networks, joined the network

of networks, forming the basis of “the Internet” as we know today. In late 80s and early 90s, the

expansion is also visible in terms of number of nations connected via the Internet, spanning majority

of the world by late 90s.

In 1991, two alternative protocols for browsing resources and information were introduced: Text

based Gopher protocol [2] by University of Minnesota, and the World Wide Web (WWW) protocol,

including support for images and visual elements, by CERN. Mosaic, the first widespread WWW

browser is launched in 1993 and became extremely popular. As the number of users having access to

graphical user interface (GUI) based browsers such as Mosaic rose, WWW protocol gained increasing

popularity and started to dominate the other protocols in terms of generated traffic.

Due to ever increasing growth of the Internet and the popularity of the WWW protocol, it

became increasingly difficult to find resources and information on the Web. Need for directories

organizing information, and Web scale search engines, facilitating to find the relevant resources

gradually became apparent. In 1994, Galaxy, the first searchable directory was launched. The same

year, one of the first search engines, Lycos claimed to index 54K document.

During the mid-90s, an increasing number of Web scale search engines started to appear, offering

different alternatives and making meta search feasible. In 1995, Altavista, shortly after its introduc-

tion, became an instantly popular search engine due to its features. Metacrawler, one of the first

meta search engines, combining and presenting the results of multiple sources, was also launched in

1995. Among various search engines that appeared during the late 90s, Google by Page and Brin

(Sep 1998), is the first documented search engine making use of global scale link analysis. Google

gained increasing popularity and became one of the leading Web scale search engines. Also in 1998,

Directhit made use of click information in ranking the pages by boosting the scores of the URLs that

are clicked on by its users. Although simplistic, this approach is one of the first (and few) examples

of ranking algorithms based on usage statistics.

In terms of the algorithms that are used, early search engines were not much different than

classical information retrieval systems. Score of a page mostly depended on the page alone (except

for weighting the importance of the terms). Traditional approaches such as term frequencies and

inverse document frequencies in vector-space model were commonly used. Table 1.1 provides an

overview of the major algorithms used in Web search engines. Usage of hyperlinks and link analysis

for ranking is relatively recent (started around 1998 and accelerated afterwards). Google, one of the



1.1 Internet and Web Search Engines, a Brief History 6

1995 Early search engines use term index and frequency information for retrieval and ranking.

Spammers use hidden list of keywords to improve chances of a hit.

1998 PageRank algorithm is introduced by Brin and Page and used in Google.

1999 HITS is used for focused crawling, improving ranking quality of early search engines

at the expense of bandwidth and computation.

2000s Transition to link analysis: Major search engines use link analysis to improve ranking.

Spammers now need to modify more than a single page to boost the score of a given

page significantly.

2002 Topic sensitive link analysis and ranking.

What is next? Usage statistics?

Table 1.2. A brief history of ranking approaches used in Web search engines

earliest search engines that uses link analysis has also been launched in 1998.

Before Google, one of the important problems early search engines faced was spamming, which

was relatively easy at the time. Spamming refers to purposely altering/boosting the score of a

page by some method so that it appears earlier in search results, or so that it appears in a query

results even though it ordinarily would not. If link analysis is not used, this can be achieved by

embedding a number of hidden keywords that does are not typically visible to the users, but visible

to the crawlers. Using this approach, by modifying the page alone, the spammer could increase the

chances of getting a hit in popular queries. Similarly, it is also possible to modify the score of a page

for a given query by modifying the term frequencies (by adding/modifying terms).

When link analysis algorithms such as PageRank is used, the above, simple approach is no

longer sufficient to significantly boost the score of a page. Instead of modifying the page alone, one

typically needs to build/enchance the pages/links that affects the score of the page depending on

the link analysis algorithm used. Hence, link analysis, PageRank algorithm in particular, rendered

the early approaches of spamming mostly absolute. However, usage of link analysis, a new type

of information, opens up new doors that can be abused by the spammers. Although it requires

relatively more effort, it is now possible to boost the score of a page without altering the page itself,

by pointing to it from a large number of pages, or pages that have high scores. Since the latter

approach is relatively harder than early approaches in general, link analysis is considered to offer

resistance or relative resistance against spamming. Here, and then on, the term “resistance” in the

context of an algorithm with respect to spam is used to denote that the algorithm reduces the effects

of spam or makes it more difficult. Complete immunity against spam should not be inferred.

Usage augmented link analysis has the potential to offer another layer of resistance against spam-

ming. When some of the algorithms/modifications examined in this thesis (Usage aware PageRank

in particular) is carefully applied, in order to significantly boost the score of a page, building/altering



1.2 Related Work in Link Analysis and Usage Statistics 7

the link structure around that page is no longer sufficient. The modified pages/links should also

be supported by a sustained traffic received from a large number of sources. The other side of the

coin is that, just like the incorporation of link analysis into ranking, a new type of information is

used: usage statistics. If necessary precautions are not taken, this information type may introduce

additional, perhaps easier ways that can be used for spamming. When carefully applied however,

existing spamming approaches may become less effective. In the case of Web scale search engines,

whether or not this new signal makes the overall ranking algorithms less prone to spamming remains

to be investigated.

1.2 Related Work in Link Analysis and Usage Statistics

Original PageRank [7], developed by Brin and Page, was based on a random walk model and formed

a probability distribution over all pages. It was used as the core algorithm in Google, a widely

used commercial search engine. The early formulation had a few problems such as “rank sinks”

and “dangling links”, and required that the nodes were strongly connected to satisfy convergence

properties. It also required that each node had at least one outgoing link to satisfy the probability

distribution property, otherwise the PageRanks of all pages would add up to less than 1. The early

issues were addressed by a few modifications [37,20], for instance, by treating each page that has no

outgoing link, as if they were pointing to every other page in the set.

Since then, a number of extensions have been proposed. Two of these extensions involve intro-

duction of topic information in order to assign PageRanks that are topic oriented. Richardson et

al. [41] precalculated different PageRank vectors for a given number of terms, focusing on the subset

of pages that contain the term of interest. For each selected term, a separate PageRank calculation

is carried out within the subset of documents that contain the document. When the query contained

one or more of these terms, precalculated scores associated with the terms would be used. Haveli-

wala [19], instead of dividing the set according to topic terms, extracted topic information from Open

Directory, and calculated a PageRank vector for each of the categories by boosting the importance

of the pages belonging to the category. Jeh et al. [22] addressed the personalization of PageRank

scores by segmenting the graph into subgraphs and precalculating scores on the subsets enabling on

the fly combination of scores. Kamvar et al. [23] proposed accelerated PageRank computations by

inserting intermediate steps, trying to eliminate first two highest non-principal eigenvalues faster.

Note that almost all of these extensions, including the modifications introduced in this thesis, use

the power method, and have similar high level mathematical formulations. One of the key differences

is the way the adjacency matrix is calculated, filtered, or modified. At the end, most of the current



1.2 Related Work in Link Analysis and Usage Statistics 8

link analysis approaches boil down to a similar iterative process.

Link analysis has also been used in other contexts. Another major algorithm for ranking pages

by making use of the link structure is the HITS algorithm [25] introduced by Kleinberg. Unlike

PageRank, this particular algorithm assigns two scores to each page, an authority score and a hub

score. It has a recursive definition that can be summarized as: A good authority is a page that is

pointed by good hubs, and a good hub is a page that points to good authorities. The algorithm is

primarily used in ranking pages via focused crawls, and in community analysis in a limited way [15].

The original version was not as scalable as PageRank and had convergence problems with high

number of nodes. Many extensions have also been proposed for this algorithm. There are also

related algorithms. Salsa [29], for instance, is also used in focused crawling, and assigns authority

and hub scores to pages. Unlike HITS however, it has a limited random walk model and is not based

on a mutual reinforcement model like HITS. A detailed overview of various link analysis approaches

in the context of focused crawling can be found in [6].

Fagin et al. compared searching within the Web vs. searching within a large scale, private,

corporate network (IBM) [13]. They reported that the IBM network has about 7K hosts containing

about 50M distinct URLs, majority of them being dynamic pages. In a number of ways, the IBM

Intranet is found similar to the Internet (in terms of page structure and major statistics such as

in-degree and out-degree of pages etc.). However some differences are pointed out. The following

axioms are proposed as key features in intranets:

• Intranet documents are often created for simple dissemination of information, rather than to

attract and hold the attention of any specific group of users.

• A large fraction of queries tend to have a small set of correct answers (often unique), and the

unique answer pages do not usually have any special characteristics

• Intranets are essentially spam-free.

• Large portions of intranets are not search-engine-friendly.

A rank aggregation approach is used and two sets of queries are tested. They observed that, for both

of the query sets anchortext and PageRank improved ranking quality, while title, content, words in

the URL, and discovery date improved ranking quality in one of the sets. Usage information is not

used in this study.

A preliminary suggestion for incorporating usage information into link analysis was proposed

by Zhu et al. in a short paper [56]. The suggested formula was named PageRate. Although it

was claimed to be an extension to PageRank, it did not have the basic PageRank properties. The



1.3 Chapter Layout 9

formulation was not intuitive. Perhaps largely due to lack of experiments, the potential problems

in the formulation that could have been identified were not addressed. Normalization was done on

incoming links, negating the difference between heavily and rarely used pages, also requiring non-

trivial normalization steps. Another suggestion for using usage information was briefly proposed by

Miller et al. [33] in the context of HITS, replacing the adjacency matrix by another matrix based

on link usage information. No experimental results were presented, except mentioning that the

algorithm was applied to a set of 300 pages, and stating that the given approach ranked the main

page highest (unlike the other modification, which was the focus of the paper).

Usage information has also been used in web search and related domains in other contexts.

Schapira [43] used a reinforcement learning approach for reranking the search results. For each

query, the system kept track of how many times a particular URL was clicked on by different users.

Similar to Directhit [12], a commercial search engine, when the same query is issued at a later

time, past information was used to boost the scores of the frequently visited URLs. Oztekin et

al. used positions of user clicks in evaluating various merging and reranking approaches in meta

search domain using implicit relevance feedback [36]. Usage information has also been used in profile

based systems to learn user interests in time, and to rerank the search results to reflect them (e.g.

by changing the relative importance of the terms according to the user’s profile learned by the

system) [54], [28].

1.3 Chapter Layout

This thesis is organized as follows:

Chapter 1 summarizes the motivation behind investigating the applicability of usage information

as an alternative signal for site specific and intranet search. A brief history of the Internet and Web

search engines, and selected related work in the area of link analysis and usage statistics are also

provided.

An overview of the general ranking procedure used in various search engines is given in Chapter

2, Section 2.1. Leading link analysis algorithms, PageRank and HITS, are described in further

detail in Section 2.2. Suggested usage based algorithms augmenting these existing methods, Usage

aware PageRank(UPR) and UHITS, along with a purely usage based approach are introduced in

Section 2.3. Furthermore, in the case of UPR, a potential improvement, as well as suggestions for

implementation are also provided.

Various pieces of the infrastructure, including the site specific search engine built for the purpose

of testing the ranking algorithms examined in this study in a real-life search setting, are discussed



1.3 Chapter Layout 10

in Chapter 3. Section 3.1 describes UMirror, the crawler built for USearch. Once a local mirror

is obtained, various pre-processing steps that are taken are described in Section 3.2. Section 3.3

summarizes how various scoring vectors are computed for each algorithm. Finally, Section 3.4

describes how these score vectors are incorporated and used within USearch.

Experimental results are provided in Chapter 4, comparing the proposed and existing methods

from various angles. Section 4.2 compares PageRank and UPR in detail in terms of global orderings,

investigating the effects of usage emphasis on the algorithm. The parameter space for suggested

methods are sampled, and all methods are compared against each other in terms of pairwise correla-

tions and distinguishing power they offer (Section 4.3). In the last part of the experiments, selected

methods/parameters are compared in a query dependent setting using a modified version of USearch

(Section 4.4). All graduate students and some of the faculty were invited to participate in this stage.

More than 100 queries were issued and evaluated.

Finally, discussions and concluding remarks are provided in Chapter 5 and Chapter 6 respectively.



Chapter 2 11

Chapter 2

Ranking in Search

Engines

2.1 General Ranking Procedure

In majority of recent search engines a number of quality measures or scores are combined to calculate

the relevance score of a page for a given query. Classical information retrieval systems typically uses

the vector-space model approach, which is also heavily used in recent search engines in conjunction

with other quality measures. In general, the similarity score of a document with respect to a query

is combined with other quality measures such as PageRank score to obtain the final score of the

document for that query.

2.1.1 TF-IDF based Ranking in Vector-Space Model

In vector-space model, each document is converted to a (sparse) vector where each entry is a pair of

numbers: id number of a term/word/keyword, and the frequency or weight of that term within the

document. Alternative retrieval approaches, and the importance of the terms within a document

and the document collection are well studied in the information retrieval literature, early discussions

appearing in text books as early as late 70s [49]. The importance of the terms within a document

collection can be typically approximated via variations of TF-IDF weighting approach [42] [18]. TF

generally refers to term frequency, capturing the frequency of the term/word within the document.

IDF refers to inverse document frequency of the term/word, capturing its importance and distin-

guishing power. It is desirable to assign high IDF scores to terms that have a higher distinguishing

power within the collection compared to terms that has low distinguishing power. If a word appears



2.1.1 TF-IDF based Ranking in Vector-Space Model 12

in almost all of the documents within the set, its IDF score would be significantly lower compared

to a word that appears only in a small subset of the documents.

IDF score of a term t can be calculated as follows:

idft = log

(

NDoc

Dt

)

(2.1)

Where NDoc is the total number of documents in the collection, and Dt is the number of documents

containing the term t.

Once IDF scores are calculated for all terms, each document vector can be normalized via the

IDF vector by multiplying the TF score of each term by its IDF score. TF score of a term t in

document d, can simply be the frequency of the term within the document:

tft,d =
Nt,d

Nd

(2.2)

or using another common approach:

tft,d = 0.5 + 0.5 ·
Nt,d

Nd

(2.3)

where Nt,d is the number of occurrences of term t within the document d, and Nd is the total number

of occurrences of all terms within the document d.

Note that, for some domains or collections, the TF-IDF mechanism is not always sufficient. In

addition to TF-IDF, it is also common to use a stop list, in which a number of terms (depending on

the language used) can be completely ignored in the context of a query (e.g. terms such as “the”,

“a”, “is”.). In other words, depending on the implementation, the stop list may effectively force the

IDF scores of the terms within the list to be zero.

The corpus may also be broken down into logical collections, and analyzed independently. For

instance, a search engine may try to detect the language or topic of each page and process them

within smaller collections such as pages related to health, or pages in a particular language where

the frequency of the terms may be significantly different than other collections.

In vector-space model, it is common practice to normalize the vector representing each document,

such that its second norm (L2 norm) is one, after which the similarity score of a document for a

query, can be calculated by taking the dot product of the query vector with the vector representing

each document. If the query vector is also normalized similarly, the dot product would result in a

score between 0 and 1, where a score of zero shows that none of the terms in the query are present

within the document, and a score of one shows that the query vector is the same vector as the

document. The above approach is also refereed to as the “cosine similarity” of a document with

respect to a query. Note that the dot product of two L2 normalized vectors is the cosine of the angle

between the two vectors.



2.1.2 Bigrams, Trigrams, n-Grams 13

2.1.2 Bigrams, Trigrams, n-Grams

A bigram refers to two words that occur together frequently in a given order, forming a logical

entity, usually referring to a concept different than its individual components. This analysis can be

generalized to trigrams, and n-grams, which are formed with 3, and n consecutive words respectively.

It can be further generalized to collocations including preferences in choosing possible terms and

multiple forms such as preferred adjectives that goes with a given term.

The term “cell” in “red blood cell” and “cell phone” does not refer to the same concept as the

single term “cell”. In such cases, weights associated with keywords in the TF/IDF scheme (Section

2.1.1) without using n-grams may not distinguish between the individual concepts represented by

the term alone, and various concepts corresponding to possible n-grams formed by the term. It is

possible to augment the analysis by considering frequent bigrams, trigrams, and/or n-grams, and

indexing them as single terms. For instance, “New York”, or “red blood cells” may be treated as

single entities or terms within the TF/IDF framework.

While considering possible n-grams within a corpus, the Apriori algorithm, and extracting fre-

quent item sets [1] can be considered . The optimization relies on the fact that in order for an

n-gram to occur at least k times, its subsets must also occur at least k times. In this context,

the algorithm first considers unigrams, extracting the ones having a frequency (or support) greater

than a threshold. On the next iteration, while considering bigrams, possible candidates that have

at least the desired support are limited via the possible sets formed by the selected unigrams. At

each iteration, items extracted in previous iterations are used to limit the candidate set.

If a pure statistical approach is used, while considering a bigram AB, probability/frequency of

A’s occurrence; probability/frequency of B’s occurrence; and probability/frequnency of both A and

B occurring as a bigram, can be used in determining whether or not AB should be considered as a

bigram within the collection. A näıve implementation may simple consider the ratio:

P (AB)

P (A) × P (B)
(2.4)

Assuming that the individual occurrences are fairly independent and the terms do not form a bigram,

the probability of having AB as a bigram, P (AB), is expected to be closer to P (A)× P (B). Hence

the ratio would be closer to 1. On the other hand, if the ratio is significantly higher, this may suggest

that A and B tend to occur as a bigram AB with higher probability than random coincidence. Note

that in natural languages, the independence assumption is a simplification; it does not hold in general

(e.g. probability of having the terms “the”, and “of” occurring as “the of” may be lower than the

probability associated with the individual terms multiplied. Whereas the probability of the terms

occurring as “of the” may be significantly higher than the former).



2.1.3 Stemming 14

The approaches above can further be improved via natural language processing, for instance,

by annotating the terms and restricting the set of possible n-grams to preferred order of nouns,

adjectives, verbs etc. An overview of various approaches for collocation and n-grams analysis can

be found in [31].

2.1.3 Stemming

Stemming refers to the process of mapping variations of a word to a “stem” of the word. For

the English language, Porter’s stemming algorithm [39], or its variations are commonly used. For

instance, using the above algorithm, words such as “computes”, “computing”, and “computed” are

all mapped to the same stem, “comput”. Stemming algorithms for various languages have also been

proposed.

Stemming is used in some search engines and information retrieval systems to enable querying

variations of a given keyword by providing one variation or the stem of the keyword. It can also

reduce the dimensionality of the system by limiting the vocabulary to word stems. This approach

has the potential to offer a more manageable vocabulary if resources are scarce. The downside is

that, if the user is interested in only one variation of the keyword, results may be cluttered with the

other variations of the keyword as well.

Stemming may improve recall in more specific queries by effectively expanding the query with

the variations of the keyword. For broader queries on the other hand, if the recall is sufficiently high,

stemming can either be omitted or the results may be ordered to give emphasis on the variation

supplied by the user within the query text.

The characteristics of a given language may also affect the incentive in using stemming. English

is one of the languages in which variations of a given term such as a verb are relatively few. In other

languages, it may be common to modify the term by suffixes/prefixes, or the verb conjugation may

lead to a larger number of variations. As a result, the degree of stemming, and where and when

stemming should be applied may depend on the particular language.

The TF-IDF mechanism and stop list can also be applied with stemming with minor modifica-

tions. One simple approach if stemming will be used on all terms, may proceed as follows: Once the

stop words are eliminated, the document is supplied to a stemmer, in which all keywords are mapped

to their stemmed version before processing further. Similarly, query terms are also stemmed prior

to conversion to a sparse vector.



2.1.4 Additional Information Available to Search Engines 15

2.1.4 Additional Information Available to Search Engines

Unlike plain text, HTML documents that are typically indexed by search engines have a number

of additional information that can be used in ranking. While the TF-IDF approach works fairly

well on plain/unstructured text, HTML structure and tags can be used to modify the weights of

the keywords further [7], [10], [34], [55]. For instance, terms that appear in the title or headings,

or terms that are emphasized or bold-faced may be boosted in weight depending on the importance

given to different HTML tags/structures.

Another additional information available to search engines is the use of hyperlinks and the

corresponding anchor text. The anchor text is usually a small description of the hyperlink between

the anchor tags or a small window (typically up to a few dozens of bytes) around the hyperlink. For

instance, Google is reported [7, 16] to augment the text of a document with the anchor texts of the

links pointing to the document. Anchor text is also used in focused search in the context of HITS

to alleviate the topic drifting problem, by using a stopping criteria based on the similarity of the

anchor text to the query [4].

In addition to the above, the hyperlink structure is heavily used in recent search engines via a

number of link analysis methods. Some of these approaches typically assign a precalculated global

score to each document by a scheme based on iterative weight propagation through the hyperlinks

(e.g. PageRank). Query similarity score is then combined with the global score(s) to calculate

the final score of a document for a given query. Most of these approaches (including classical

PageRank) solely depend on the hyperlink structure and can be precalculated independent of the

query. More recently, there are suggestions to assign multiple scores to each document for predefined

contexts/topics ( [41], [19]). When a new query is issued, the context is determined, and one of these

scores are selected and used accordingly. Note that, although current literature does not explicitly

address fuzzy selection of topics, there is no reason why more than one score per document cannot

be selected and combined in topic sensitive approaches with varying membership degrees. Among

recent search engines, Teoma [47], when first launched, claimed that a context sensitive ranking

approach was used in the engine. However, additional details were not provided.

Section 2.2 discusses two leading link analysis algorithms in further detail. Proposed usage based

methods augmenting these two major algorithms via usage statistics as well as a näıve, purely usage

based ranking approach are introduced in Section 2.3. These algorithms, discussed in the remainder

of the chapter, produce a single, global score for each document. All of these approaches are treated

as a quality measure that is intended to be combined with the query similarity score (along with

other quality measures) while calculating the final score of a document for a given query.



2.2 Leading Link Analysis Algorithms 16

2.2 Leading Link Analysis Algorithms

In this section, two major link analysis approaches are discussed. Modifications to these algorithms

incorporating usage statistics will be proposed. The modified versions will then be compared to the

original algorithm.

2.2.1 PageRank (PR)

PageRank is one of the leading link analysis approaches, proven to be very useful in Web scale

search. In conjunction with classical information retrieval approaches, it has been an important

quality measure in various search engines, including Google [16].

Original PageRank formulation is based on a random walk model and forms a probability distri-

bution over all pages. The random walk user, either starts from a new page (with probability 1−d),

or follows a random link from the current page (with probability d). The score of a page p is given

by

PR(p) =
(1 − d)

n
+ d ×

∑

i→p

PR(i)

C(i)
(2.5)

where d is the damping factor, n is the total number of pages in the dataset, PR(i) is the score

of page i, C(i) is the number of outgoing links on page i, and i iterates over the set of pages that

points to page p.

The parameter d controls how much emphasis is given to score propagation (right portion of the

formula), vs. initial scores (left portion) during the iterations. If d is low, a page’s score is closer

to its initial assigned score (1/n). Also, since score propagation has a lower weight, convergence is

achieved faster. If d is high, score propagation is weighted more, scores of pages that are pointed to

by many (important) pages have increasingly higher scores, and convergence is achieved slower in

general. The proposed value for d in the original paper is 0.85. Various values for d has been tried

in our previous experiments, and 0.85 and similar values turned out to be a reasonable choice to be

used in PageRank, as well as the usage based modification that we developed.

PageRank has a number of desirable properties. It has an intuitive interpretation, offers relative

resistance against spamming, scales well to the Web, and it is relatively stable (in general, changing a

subset of nodes/links does not affect overall scores dramatically). If the graph is fully connected, and

if all pages point to at least another page in the dataset, PageRank forms a probability distribution

and is inherently L1 normalized: sum of all scores add up to 1. If not all pages have at least one

outgoing link, they can be treated as if they point to every other page in the dataset in order to

conserve the probability distribution property [37,20].



2.2.2 HITS 17

2.2.2 HITS

Original HITS algorithm has been proposed by Kleinberg [25]. Unlike PageRank, two scores are

assigned to each page: An authority score, and a hub score. The formula can be summarized by a

recursive definition: A good authority is a page that is pointed by good hubs, and a good hub is a

page that points to good authorities.

For a page p, a nonnegative authority weight ap and a nonnegative hub weight hp are assigned.

All a and h values are initialized with a uniform constant. The authority and hub weights are

updated using the following equations [17]:

ap =
∑

i→p

hi (2.6)

hp =
∑

p→i

ai (2.7)

Similarly, in matrix form, if A is the n× n adjacency matrix (A(i, j) is 1 if i points to page j, or

0 otherwise), and a and h are the authority and hub vectors, the two score vectors can be iteratively

calculated:

hi+1 = A.ai (2.8)

ai+1 = A′.hi (2.9)

where, A′ is the transpose of A. Note that, after each iteration, the two vectors are L1 normalized,

since, unlike PageRank, the formulation does not have an inherit auto-normalization property.

HITS is primarily used in the context of focused crawling. A query is issued to a search engine

and top n documents are retrieved to form the core document set. The set is then expanded by fol-

lowing both incoming and outgoing links to/from these pages (typically, going 2 links forward/back,

resulting in a few thousands of documents). Usually topic drifting is handled by limiting the expan-

sion when query and content/anchortext similarity drops below a threshold. Once the document set

is formed, hubs and authorities are calculated using HITS. HITS can also be applied globally. How-

ever, for large number of documents, it has scalability problems, and is not as stable as PageRank

in general.



2.3 Proposed Usage Based Ranking Methods 18

Uses static link structure Uses link traversal statistics Uses page visit statistics

Näıve no no yes

UHITS yes (optional) yes no

UPR yes (optional) yes yes

Table 2.1. Key differences between proposed usage based ranking methods

2.3 Proposed Usage Based Ranking Methods

A selection of usage based ranking methods are proposed to cover a wide range of usage types. Usage

aware PageRank (UPR) uses both link traversal statistics and page visit statistics, HITS modified

via usage (UHITS) uses link traversal statistics, and finally two versions of the näıve approach

Counts and MCounts use page visit statistics. Both UPR and UHITS augment the corresponding

link analysis approach with usage information. How much emphasis is to be given to usage vs. static

link structure is controlled via one or two parameters. Counts and MCounts, on the other hand, are

not based on link analysis. They are primarily based on the number of times a given page has been

visited.

High-level differences between implemented usage based ranking methods are summarized in

Table 2.1. These methods are discussed in further detail in the following sub-sections.

2.3.1 Usage Aware PageRank (UPR)

The random walk user in the original PageRank formulation does not differentiate between links on a

given page while deciding which one to follow, nor does it differentiate between pages when it decides

to start from a new page. Consider a scenario where we have a page, p1, which is bookmarked by

various users, therefore visited more often than other pages. Consider a link on that page, p1 → p2,

that points to page p2, which is followed by majority of its visitors, but other links on page p1 are

hardly used. Intuitively, the probability of users visiting page p1 is higher than the probability of

users visiting other pages. Similarly, PageRank of p1 should contribute more to the PageRank of p2,

since p1 → p2 is followed more often than other links on p1. The random walk model does not capture

these differences. We modify the user model in favor of a biased random walk model. The biased

random walk surfer differentiates between links as well as pages. It does not follow each link with

equal probability. It also has preferences while selecting a new page to visit without following a link.

In our model, score of a page is distributed to the pointed pages, proportionally to the probability

that the average user will follow the corresponding link. Also, the probability distribution associated

with starting from a new page is no longer uniform, but biased by the estimated probabilities. Using



2.3.1 Usage Aware PageRank (UPR) 19

UPR, score of a page p is given by

UPR(p) = (1 − d) ×

(

1 − a1

n
+ a1 × Wjump(p)

)

+

d ×













(1 − a2) ×
∑

i→p

UPR(i)

C(i)
+

a2 ×
∑

i→p

UPR(i) × Wlink(i → p)

Wtotal(i)













(2.10)

where the parameter a1 controls the usage emphasis in the random jump portion of the formula, a2

controls how much usage emphasis will be given in calculating the weights of the links, Wjump(p)

is the estimated probability to go to page p directly without following a link, Wlink(i → p) is the

weight of the link from page i to page p in the usage graph, and Wtotal(i) is the total weight of

all outgoing links from page i in the usage graph. Note that Wlink(i → p)/Wtotal(i) estimates the

relative probability that the average user will follow the link i → p from page i to page p (as opposed

to 1/C(i) in the original formulation).

The parameters a1 and a2 act as sliders and control how much emphasis is given to the usage

information vs. the static link structure. If they are set to zero, the formulation becomes equivalent

to the original PageRank formulation; if they are set to one, the emphasis completely shifts to the

usage graph; for values in between, the behavior gradually shifts from PageRank to pure usage based

estimations.

The motivation behind using two parameters as opposed to a single one may not be apparent at

first glance. However, the two portions of the formula have different characteristics, and one may

choose to adjust them separately. In some sense, the first portion of the formula states how the

scores (or the flow) will be injected into the system through each page. In the case of PageRank,

the influx from each page is fixed and proportional to 1/n, while in the case of pure usage based

approach, the influx from each page is proportional to the probability that the average user will

jump to that page directly. The second portion of the formula states how the injected scores will

flow through the links. In the case of PageRank, scores are equally distributed across links, while

in the case of pure usage based approach, scores are distributed according to the probabilities of

following the links.

Deemphasizing the usage statistics associated with visiting a page directly may be desirable in

some cases, for instance, when we want to reduce the effects of browser home pages (which may get

unintentional hits every time a user opens up the browser), and when we do not have full usage

statistics for a subset of pages. Note that weights of links going out of a given page is normalized

for each page in our formulation. If we do not have usage statistics about the links of a given page,

all of them can be treated equally. However, if we assign initial weights reflecting the number of hits



2.3.1 Usage Aware PageRank (UPR) 20

on a page without following a link, portions of the dataset that do not contain usage statistics will

be penalized. Note that a similar situation occurs if the usage sampling rate for different portions,

domains, or sites are different; the portions that are undersampled will be assigned low initial scores.

By using two independent parameters, it is possible to reduce such undesirable effects in the presence

of partial or uneven information, without affecting the second portion of the formula. Note also that,

custom browsers or crawlers can choose to omit the referrer field altogether. It is also relatively easier

to attack the first portion of the formula via usage based spamming if the first parameter is set to a

high value, close to one. If a significant subset of browsers/tools does not use the referrer field, or if

usage based spamming is suspected, the first parameter can be lowered without affecting the second

portion and the global stability of the formula.

Implementation Issues

A simple way to approximate the probabilities is to use the frequencies or by simply counting the

number of hits to pages/links. In this approach, Wjump(p) is the number of visits to page p when

the referrer field is empty divided by total number of visits to all pages with an empty referrer

field; Wlink(i → p) is the number of times the page p is accessed when the referrer field is page i;

Wtotal(i) is the total number of times a link is followed from page i (referrer field is page i). This

approach is tested first and worked reasonably well for most cases. However, there are certain types

of user behavior that may bias the probability estimates. Every time a user opens up a browser, the

browser’s home page gets a hit, even if the user’s intent is to visit another page. Also, one may argue

that equal number of hits to a page/link from several users should be weighted higher than a user

hitting the same page/link several times, giving precedence to the overall group behavior as opposed

to individuals. In the UPR formulation, instead of using counts of links followed, and counts of hits

to pages with empty referrer fields, we can deemphasize successive accesses to pages/links from the

same user in a given time window by using modified counts which is a log transform of the counts:

MCount = log2(1 + Count) (2.11)

If there are no accesses to a particular page, the modified count is log2(1 + 0) = 0, if there is

a single access, the modified count becomes log2(1 + 1) = 1, and the modified count lowers the

weight of subsequent accesses from the same user. After the transformation, adding up all the

modified counts from all users for all time windows, gives us estimates that better reflect overall

user behavior. This approach has the additional benefit of making the system more robust against

usage based spamming. Note that, if n people access a link/page just once within the time window,

the modified counts will be exactly the same as before. However, if only a single individual accesses



2.3.1 Usage Aware PageRank (UPR) 21

the same link/page n times the contribution of this time window will be log2(n).

The first approach (simple counts), does not require time and IP information. However, in order

to implement the modified counts approach, we need a way to identify users or user groups. IP

numbers or anonymized IP numbers/user identifiers can be used for this purpose. We also need to

divide the dataset into different time windows. For this purpose, time stamps can be used. In our

site, we found a day to be a reasonable time window, which is consistent with the way the logs are

rotated. It is also fairly easy to divide the aggregated logs into time windows of a day.

UPR is similar to PageRank in terms of computation and is also quite scalable. PageRank

can be implemented in terms of sparse matrix-vector operations, at each iteration, matrix vector

product being the most costly operation (weighted adjacency matrix and PageRank vector). Once

the adjacency matrix is modified for UPR, subsequent operations are similar. Only the differences

will be illustrated: The full usage graph is stored in sparse format, and requires only slightly more

space than storing the static linkage graph (for each link and page, we need a floating point entry

to store the weight capturing the frequency/probability information). Usage information can be

built/updated incrementally. The simple counts approach is trivial and will be omitted. Modified

counts approach is implemented efficiently as follows: Usage graph is incrementally built or updated

by processing each time window separately. The full graph is stored on secondary storage (in sparse

format). When new data is available (a new time window is built), only information about the

links/pages that appear in the current time window needs to be efficiently accessed and updated. In

memory hash tables or balanced trees can be used to insert and update new links/pages. Current

time window is scanned in one pass, and a partial graph and statistics corresponding to the entries in

the log is built in memory. Once the entries in the current time window is incorporated, the partial

graph is merged with the full usage graph in one pass on the secondary storage. For instance, if

balanced trees are used, the space complexity for processing a time window is proportional to the

number of unique pages/links that appear in the time window. If there are n unique pages/links

in the time window, the time complexity for processing the full time window becomes n × log(n)

using balanced trees. Other data structures are also feasible, some offering different storage/time

tradeoffs. It is also fairly easy to decay old usage information, for instance, by using an exponential

decay approach while merging the full usage graph with the partial graph corresponding to the

current time window.

Once the usage graph is updated, a lazy UPR iteration does not take more than a constant

times higher than a PageRank iteration. The space complexity is also no more than a constant

times higher. Once a1 and a2 are fixed, it is possible to rearrange the formula and build a combined

matrix to be used in further iterations. After this precalculation step, UPR iterations become similar



2.3.2 HITS Modified via Usage Statistics (UHITS) 22

to PageRank iterations in terms of speed and storage. The rearranged formula is as follows:

UPR(p) = (1 − d) ×

(

1 − a1

n
+ a1 × Wjump(p)

)

+

d ×
∑

i→p

UPR(i)

(

1 − a2

C(i)
+

a2 × Wlink(i → p)

Wtotal(i)

) (2.12)

Note that the only term that changes during the iterations is UPR(i).

UPR inherits basic PageRank properties. Usage information can be updated incrementally,

and the formulation is quite scalable. UPR iterations have similar time and space complexity

as PageRank iterations (only a small constant times more expensive). Usage importance can be

controlled smoothly via the two parameters. UPR can also work with limited usage information:

if the two parameters are set to any value between 0 and 1 (exclusive), it gradually converges to

PageRank as less and less usage information is available. At the extreme case (complete lack of usage

information), it will be equivalent to PageRank. Also, the modified counts approach, increases UPR’s

robustness and resistance against usage based spamming. Note that the formulations suggested by

the two preliminary attempts [56], [33] in incorporating usage statistics into link analysis did not

have majority of the key UPR properties (in particular, ability to work with limited usage gracefully,

ability to control usage emphasis, scalability, and resistance against usage based spamming).

2.3.2 HITS Modified via Usage Statistics (UHITS)

Miller et al. proposed a modification to HITS in which the adjacency matrix is replaced by another

matrix based on link usage information. All entries in the adjacency matrix are initially set to zero.

For each link traversal observed in the web logs, the corresponding entry in the adjacency matrix

is incremented. Note that if a link has never been used in the web logs, the static link structure is

ignored (the corresponding entry is zero).

We generalize this approach and add a parameter a acting as a slider between static link structure

and usage based linkage. The composite adjacency matrix is calculated as follows:

A = (1 − a) × Astatic + a × Ausage (2.13)

Similar to UPR, if the parameter is set close to zero, static link information is emphasized and

the formulation converges towards original HITS. If the parameter is set to one, it should be very

similar to the formula suggested by Miller et al. Note that Miller’s formulation is not normalized.

L1 normalization is used in the adjacency matrix in our version, which makes the formulation more

robust against partial lack of usage information or uneven sampling. Unlike UPR, Miller’s suggestion



2.3.3 The Naı̈ve Approaches: Counts and MCounts 23

as well as the generalized version does only use statistics on link traversals. It does not make use of

statistics on going to pages directly (using bookmarks, or typing the URL).

2.3.3 The Naı̈ve Approaches: Counts and MCounts

The two simple quality measures implemented are primarily based on number of visits to pages.

Using the Counts method, we basically count the number of times users have visited a given page,

and use it as a quality measure. Once counts for all pages are obtained, the scores are L1 normalized.

Using this approach, score of a page p (after L1 normalization) is given by:

Score(p) =
Countvisit(p)

∑n

i=1
Countvisit(i)

(2.14)

where, n is the number of pages in the dataset, and Countvisit(i) is the number of times users visited

the page i, either by following a link, or by going to the page directly (typing the URL or using a

bookmark).

In the MCounts approach. instead of using direct counts, we use a log transform of the counts

similar to Equation 2.11. Score of a page p becomes:

Score(p) =
MCountvisit(p)

∑n

i=1
MCountvisit(i)

(2.15)

where, MCountvisit(i) is the log transformed counts. Similar to the UPR case, the aim is to

deemphasize the scores of pages visited by a few users a large number of times, in favor of pages that

are visited by many people. This is achieved in the same manner as UPR using modified counts:

The dataset are divided in time windows. For each time window, number of visits from each user

are counted separately. The log transform of the counts are obtained, and modified counts for each

user are added up for all time windows.

Note that HITS modified via usage solely uses statistics on link traversals. Counts and MCounts

methods ignore the link traversals and use number of visits to pages. UPR on the other hand, makes

use of both link traversal statistics as well as statistics on going to pages directly.

2.4 Summary

Modern search engines employ various techniques such as TF-IDF weighting, stemming, n-grams

analysis, usage of html tags and anchor texts etc. to improve ranking quality. They combine various

quality measures and signals to produce an ordered set of results for a given query. For Web search,

one of these important signals is link analysis.



2.4 Summary 24

Two major link analysis approaches examined in this thesis are PageRank and HITS. PageRank

and its variants have proven to be a strong quality signal in Web search and has been used in

leading search engines such as Google. HITS and its variants have been primarily used in focused

search where a small corpus related to a query or a topic is being retrieved and reranked. Especially

PageRank, and in some degree HITS variants, are also used to rank pages independent of a query,

offering a topic/query independent global ordering.

Usage information has been previously used in a limited way in ranking. We introduce modified,

generalized versions of PageRank and HITS making use of usage statistics. A näıve approach, purely

based on number of visits to a page is also examined. Usage Aware PageRank makes use of link

traversal statistics as well as page visit statistics. UHITS modifies the adjacency matrix using link

traversal statistics only. The näıve approach is purely based on page visit statistics, ignoring linkage

information.

These algorithms can be combined with classical information retrieval approaches to produce a

final ranking. Each algorithm assigns a global quality score to each document in the repository,

producing a quality vector that can be plugged into the USearch infrastructure. Apart from this

quality vector, the infrastructure follows the same steps for each algorithm to produce a ranked result

set for a given query. All things being equal, this thesis compares the ranking quality offered by these

algorithms, examining the impact of usage statistics in an intranet/site specific search setting. The

USearch infrastructure is introduced in Chapter 3. Experiments comparing the ranking algorithms

are provided in Chapter 4.



Chapter 3 25

Chapter 3

Infrastructure

In order to compare PageRank and HITS, as well as the usage based ranking approaches in a real life

search setting, USearch, a flexible site specific search engine has been built. This chapter discusses

various pieces of this infrastructure in further detail. Major steps/modules used by the infrastructure

can be summarized as below:

• Crawler/site mirroring tool.

• Modules processing the local copy of the site including link extraction, filtering, indexing, and

building the site graph.

• Modules processing the usage logs, collecting link traversal and page visit statistics, building

the usage based site graph.

• Various modules that calculate the score vectors for documents in the repository (one vector

for each algorithm/parameter selection under comparison).

• A general purpose, flexible search engine that incorporates the ranking methods, testing them

in a real life setting.

• Modules for analyzing the results including global comparison of each ranking method (via

statistics such as Pearson and Spearman Correlations). Exploring the effects of different pa-

rameters and usage emphasis values.

The interface for each module is carefully designed, making it possible to replace a given module

by another one having a similar functionality when needed. The whole process is broken into different

pieces working as a pipeline. Mirroring tool produces a local copy of a given site in a specified format.

The link extractor/graph builder module traverses the directory structure; builds a keyword based



3.1 Site Mirroring Tool (UMirror) 26

index using a third party tool; assigns a unique id to each URL; builds the site graph (adjacency

matrix); and produces a number of data files and statistics that will be used in further stages. A

separate module is called to produce a snippet for each document. Another module processes the

usage logs, building a usage based graph in a format similar to the static linkage graph. Then,

various modules are called to calculate the scores of internal URLs using various ranking methods

and parameters, producing a score vector for each method/parameter combination. After this stage,

score vectors and snippets are ready to be plugged into the search engine. The whole process is

automated using a number of scripts taking into account various dependencies. Once a new mirror

is obtained, naturally, most of the pipeline needs to be recomputed. However, if an intermediate step,

such as a given ranking module is updated, only the dependencies that are affected are computed

for efficiency and ease of experimentation. High level interaction between various modules are

summarized in Figure 3.1.

3.1 Site Mirroring Tool (UMirror)

Various open source/free site mirroring utilities are examined in detail for suitability. The desired

criteria in a suitable mirroring tool include:

• Ability to focus on a given domain/site/subsite by regular expression or wildcard based match-

ing (e.g. *.cs.umn.edu/).

• Ability to select the type of items that should be mirrored (HTML files, text files, dynamic

HTML files etc.)

• A unique mapping from a given URL to its local copy, and from the local copy to the URL,

which may not be trivial when all possible port and protocol variations are considered. 1

• Ability to identify and distinguish default HTML index name (index.html or index.htm for

various sites). 2

1Many mirroring tools does not include protocol information or port information. Combined with poor default

html name handling, this can result in potentially serious name collisions in the local copy of a site.
2When a link such as http://www.cs.umn.edu/ is to be retrieved, the web server automatically uses the default

HTML name. Most crawlers assume that this name is “index.html” or “index.htm”. However, the naming can be quite

arbitrary (e.g. for different languages). If the site uses “default.html” as the default HTML name. http://some.site/

and http://some.site/default.html retrieves the same page. In this case, if the crawler assumes that the default html

name is “index.html”, and if there is also index.html within the same directory as “default.html”, a name collision

occurs. This problem may be especially important when both index.htm and index.html are heavily used within a

site.



3.1 Site Mirroring Tool (UMirror) 27

Internet/Intranet Web logs

Mirroring tool

Snippets Index Static site graph

Log processor

Usage based site graph

Ranking methods

Global comparisons

Search engine

Query dependent comparisons

Figure 3.1. Interaction between modules



3.1 Site Mirroring Tool (UMirror) 28

• Scalability issues (limit on number of pages/items that can be downloaded).

• Support for robots.txt (a protocol specifying which parts of a site can be mirrored and at

which rates).

• A reliable queueing implementation to support recursive and stable crawling.

• Support for various protocols other than HTTP. In addition to regular HTTP, FTP, secure

HTTP, and secure FTP would be useful for future extensions (optional).

• Support for HTTP 1.1 for efficient resource usage (optional).

• Support for multithreading (optional).

• Portability, support for multiple platforms.

None of the mirroring tools examined covered a large portion of the essential properties. The

ones that are worth mentioning include Wget [51], Pavuk [38], HTTrack [21], and cURL [9].

Wget has a number of desired features. It is ported to many platforms and is multithreaded

retrieval capable on most of them. It supports different protocols, and robots.txt specification. It

has the capability for recursive crawling. It can limit crawling within a site/domain. It is also

possible to specify which file extensions are to be crawled. However, it does not produce a unique

naming. For instance, https://URL and http://URL are mapped to the same local name, resulting

in a name collusion if the same resource exists in different protocols. It also lack a way to specify

which default HTML name should be used (assumes index.html).

Pavuk does not support multiple protocols, and is similar to Wget in terms of capabilities.

However, it has a better local naming scheme, resulting in a one to one mapping from URL to

local name and vice versa. However, both Wget and Pavuk have stability problems. In the test

site (cs.umn.edu domain), both of the tools terminated prematurely after downloading about 3K

documents.

HTTrack is multithreaded, has name collision problems, and at the time of comparison was

inferior to Wget in terms of capabilities.

cURL does not support recursive crawling, but supports various protocols (similar to Wget),

and is quite portable. It can potentially be used as a retrieval tool hiding the protocol level details

within a larger framework.

As none of the tools that are examined had the essential features that are required, a queueing

and link filtering system (UMirror) making use of regular expression matching and HTML parsing

is implemented. Wget is used for retrieval as an external call (cURL can also be used with minimal



3.2 Processing the Local Directory Structure 29

changes). The queueing system is robust and efficient. HTML 4.01 [40] standard is closely followed.

The parser checks for validity of the HTML and understands various types of links (not only limited

to a href) as well as various ways of converting relative links to global URLs. Although, it is not

currently multithreaded, it is very stable, and has a unique mapping from URLs to local directory

structure and vice versa. Since Wget is used, the mirroring utility is also highly portable and can

potentially support other protocols with little modification.

For default html name, an uncommon name, also used by Pavuk, is selected to reduce the

possibility of name collisions ( . .html). This name can be changed easily by recompiling UMirror.

When one of the characters (e.g. ‘ ’) is treated as a special character and escaped when fetched

directly, but not escaped when it is used as the default html name, name collisions are eliminated

completely.

The directory structure that is adopted is as follows: /protocol/domain port/relativepath/filename

For instance, http://www–users.cs.umn.edu/∼oztekin/pmvis/index.html is mapped to

/http/www–users.cs.umn.edu 80/∼oztekin/pmvis/index.html. Note that 80 is the default port num-

ber for the HTTP protocol and is assumed if it is not overridden. If a special character is used within

the URL which would be impractical or unsafe to be used within file/directory names, the character

is escaped using URI conventions [3](e.g. %20 is the space character).

Relative links containing malformed “./”, “../”, and “/” as well as various exceptions such as

rarely used HTML features to override the base path are correctly handled. The mirroring tool can

be easily configured for a new site via a small configuration file (specifying domain boundaries), and

mirror that site in a robust and stable manner, producing a unique mapping from URLs to local

directory structure.

As a side note, UMirror does strict HTML 4.01 compliance checks and can detect various anoma-

lies that most browsers ignore. While crawling cs.umn.edu domain using UMirror, various errors

within the main site structure as well as in the official HTML pages are detected and reported to the

system staff. Problems in the scripts and templates used in generating these HTMLs are checked

and fixed to produce a healthier site as a result.

3.2 Processing the Local Directory Structure

Once a site is mirrored, links need to be filtered and extracted to build a static link structure graph.

For this, among other modules, HTML parsing and name mapping modules developed for UMirror

are used. Link extractor module recursively processes each HTML and extracts links of the specified

types, converting relative links to global URLs when needed. Each URL is given a unique id number,



3.3 Calculating the Scores 30

which is, in turn, used within the adjacency matrix that is being constructed (for space/computation

efficiency). Since most of the pages tend to link to its closer neighbors with higher probability than

random pages (e.g. navigational links), simple heuristics can be used to reorder the URLs, resulting

in slightly better performance due to better cache hit/miss ratio during matrix/vector operations.

The current version orders the pages in a breadth first order. Other trivial reordering approaches

such as alphabetical order can also be considered, in most cases, resulting in a noticeable, but slight

speedup compared to a random ordering.

The entries within the adjacency matrix are weighted (between 0 and 1). A sparse matrix

structure is used. The link extractor can be extended to try different link filtering approaches

(weighting links according to path distance, token distance etc., as well as removing some navigation

links). Since the links will be weighted according to usage, this feature is currently disabled.

A number of third party programs/libraries are examined for suitability for indexing. Among

various choices, Swish-E [44] covered a large portion of the desired properties and selected to be used

in indexing the HTMLs. It is portable, light-weight, scalable, efficient, and has support for boolean

queries and optional stop word list. HTMLs are converted to text via HTML to text conversion

tools developed for Mearf [36, 32], and then indexed.

For each internal URL, the HTML is processed to extract the snippet. 200 bytes are allocated

per snippet. All snippets are concatenated in a single, binary file. Once the number(id) of a

particular internal URL is known, its snippet can be efficiently fetched from the file by calculating

the corresponding offset. During the search process, this procedure requires a single seek and fetch

for each subsequent snippet to be displayed once the snippet file is opened, and is implemented

efficiently. Note that, for small to medium size sites, the whole snippet file can be cached in the

main memory, further speeding the process. It is also possible to distribute the data into a number

of machines in a simple manner if scalability issues arise for larger sites.

3.3 Calculating the Scores

Once the static link structure graph, usage graph, and supporting information are available, various

modules are called to calculate the scores of internal URLs to build a ranking vector for each

method/parameter selection. Matlab’s ASCII sparse vector/matrix format is used for compatibility

and ease of input/output between C++ and Matlab modules. Once the relevant information is

supplied to each module, scores of all nodes are obtained in a sparse format using the specified

parameters. Scores of internal nodes are then extracted and collected in a binary file. 4 Bytes are

reserved for the score of each internal URL. As in the case for the snippet file, once the URL id is



3.4 Search Engine (USearch) 31

known, the relevant score is fetched by calculating the corresponding offset of the file. Again, for

small to medium size sites, this information can fit in the memory easily.

Most of the above steps are carried out via a number of C++ programs, a few Matlab scripts,

and a number of scripts automating the generation of various score vectors, calling the modules with

pre-selected parameter values for automation.

3.4 Search Engine (USearch)

In order to try various ranking approaches, a general purpose, flexible search engine has been devel-

oped: USearch [48]. The current prototype can be accessed at http://usearch.cs.umn.edu/.

USearch engine produces a dynamic HTML file (using CGI) that closely conforms to HTML

4.01 [40] specification. User interface is well-designed, making use of fairly recent HTML features

such as Cascading Style Sheets (CSS) [50] to decouple user interface design and choices from the

main functionality, while offering the ability to customize a large portion of the output to user needs

independent of the main engine. This approach allows a rich user interface for browsers that support

CSS. The experience is further enhanced by limited, yet non-vital use of Javascript.

USearch is tested on various platforms using various browsers. Browser dependent features are

avoided in favor of commonly available features within the HTML 4.01 specification. Note that

the advanced user interface features as well as the use of limited scripting (Javascript) does not

necessarily reduce USearch’s target audience. If a browser/platform does not support the latest

HTML specification and the above features, USearch will still run with full functionality, as long as

the browser conforms to HTML 4.01 or previous specifications. In practice, older versions of popular

browsers, and new, limited browsers such as the ones on portable devices, PDAs etc. should be able

to use USearch with reasonable functionality.

Total HTML size retrieved for each query was also one of the concerns during the design process.

Careful use of CSS and decoupling user interface from the main HTML file has the additional

benefit of reducing the HTML size. CSS is retrieved once and cached by most browsers. Moreover,

formatting related to each item/cell in the result screen is minimal and shared by all cells. By using

CSS in formatting and eliminating repetitions, it was possible to reduce the HTML size by more

than a factor of two compared to older approaches using tables and näıve formatting.

The engine itself is highly portable. It is written in C++ and has been tested on various flavors

of Unix including GNU/Linux and OpenBSD. It also runs on Windows using various Web servers.

The engine is quite optimized, efficient, stable, and scalable. Using the test site (cs.umn.edu), a

query returning 50 documents out of a database of 20K documents, takes about 0.01 seconds on a



3.4 Search Engine (USearch) 32

Celeron 333Mhz, OpenBSD system using any of the ranking methods implemented.

USearch is implemented in a modular and extensible way. It is possible to add new databases

and new methods with different parameters with minimal effort. It directly uses the index file, and

the binary snippet and score formats produced by previous stages in the pipeline. USearch uses a

reranking approach. Once a query is issued, top n documents are retrieved (sorted according to

cosine similarity to the query). These results are then reranked by combining the text similarity

score and the selected ranking score (Final score for a given document is obtained by multiplying the

two scores). Note that this approach offers better flexibility while adding, removing, or modifying

ranking methods. For a production system, once a final method and its parameters are selected, it

is possible to combine the indexing structure with one or a limited number of ranking vectors, thus,

eliminating the score combination stage. However, for USearch, where multiple ranking approaches

are implemented and compared, this slight gain in speed is not worth the loss of flexibility, considering

that the engine is already quite optimized and fast.

Different ranking methods/quality measures can be compared in a query dependent setting in a

fairly unbiased way using USearch. All steps (except the particular quality measure under compari-

son) are the same for all methods. If a method reranks the documents in a way that the high quality

documents appear in earlier positions compared to other methods, this method is intuitively better

than the other methods for this particular query. By issuing a number of queries, and examining

the positions of the “relevant”, high quality documents using each method, it is possible to compare

these methods for the queries that are examined.

A screenshot of the USearch main page is shown in Figure 3.2. Number of links to be retrieved

per query is specified via the “Results” box. The default behavior is to return 50 links per query,

and the current maximum value is 1000 links per query. Method selection is carried out using the

“Method” box. Available methods are:

• Normal: Use similarity to the query only (no reranking).

• PR: Regular PageRank implementation.

• UPR: Usage Aware PageRank, with a1 and a2 set to 0.75.

• Counts: The näıve method using number of visits to pages as a quality measure.

• MCounts: Similar to Counts, but uses modified counting scheme (log transfer of counts).

• HITS-aut: Regular HITS, authority vector.

• HITS-hub: Regular HITS, hub vector.



3.4 Search Engine (USearch) 33

Figure 3.2. USearch main page



3.5 Summary 34

• UHITS-aut: HITS modified via usage, authority vector (a=0.75).

• UHITS-hub: HITS modified via usage, hub vector (a=0.75).

Note that not all method/parameter pairs that are examined are included in the public user

interface. A representative from each method with reasonable parameters are selected to reduce

clutter.

The database selection is carried out using the “Site” box. Adding a new database (site or

domain) to USearch requires the following steps:

• Selecting a unique identifier for the site (e.g. CS for cs.umn.edu).

• Preparing a small script specifying domain/site boundaries and running UMirror.

• Once the mirror is obtained, calling a script that builds the full structure for the specified site.

• If usage logs are available, processing the usage logs and producing a usage based graph.

• Once the score and snippet files are prepared for the site, calling another script that copies

the files to the search engine’s input directory.

• Rerunning the search engine after adding the identifier of the new site to the configuration

header.

3.5 Summary

USearch is a flexible platform to test various ranking methods. It has fully functional crawling,

filtering, indexing, pre/post processing, link analysis, usage log analysis modules, as well as a fairly

optimized and flexible search engine that serves the results. It can crawl, index, process, and serve

queries for a small to medium size site out of the box with modest hardware requirements under

reasonable load.

Almost all modules of the USearch infrastructure (except platform dependent scripts) are highly

portable. The engine itself runs on various platforms, and can be used via various browsers/platforms.

The user interface is designed in a way that the functionality is still retained if a browser/platform

does not support a subset of the advanced features used to enhance the presentation (e.g. older

browsers, handheld/embedded devices etc.).

By design, USearch uses a reranking approach, in which top n results in terms of cosine similarity

to the query are returned and reranked by the selected method under comparison. Since all steps



3.5 Summary 35

except the quality measure are the same for all methods, it offers a fairly unbiased way of comparing

different quality measures.

Different methods can be compared in a query dependent setting by issuing a number of test

queries and comparing the position of the documents for different methods for the same query.

A quality measure that places the important documents in earlier positions compared to another

method is deemed superior for that particular query.



Chapter 4 36

Chapter 4

Experimental Results

In order to evaluate the performance of the proposed methods, a number of quality measures are

implemented and incorporated within USearch, http://usearch.cs.umn.edu/. Figure 4.1 shows the

results of a typical query using the engine. User can select the number of links to be retrieved

(default is 50), the quality measure used (PageRank, UPR etc.), and the database to search from

(currently, only cs.umn.edu domain has usage statistics available). The engine uses cosine similarity

to the query and an additional, selectable, scoring mechanism to rerank the results (by multiplying

the similarity score with the score suggested by the selected quality measure). *.cs.umn.edu domain

is crawled a few months after a major change in the site structure, allowing time for the site to

become fairly stable. Approximately 6 months worth of usage logs starting from April 2002 are

extracted around that snapshot. HTMLs are processed to build the static linkage graph. Snippets,

titles, and links are extracted for each document. Logs are processed in order to obtain the usage

based graph using both simple and modified counting approaches. The final data set contains a total

of 65K URLs, out of which, about 20K URLs belong to the core pages for which we have extensive

usage information (www.cs.umn.edu and www-users.cs.umn.edu domains).

UPR (Section 2.3.1) parameters a1 and a2 are sampled in increments of 0.25 from 0 to 1. Thus, a

total of 25 different combinations are calculated using modified counts approach. The simple counts

approach is also tried for a subset of these combinations to examine the effects of the modification.

Note that the combination corresponding to a1 = a2 = 0 is exactly the same as PageRank in both

cases. Various damping factor values have been tried. Values around 0.75 to 0.9 performed similarly

and reasonably well. In order to facilitate comparison with other work in the field, the damping

factor, d, is set to 0.85 for all PR and UPR variations throughout the reported experimental results.

Note that this value has been suggested by the original PageRank paper [37], and has also been used



Chapter 4 37

Figure 4.1. USearch user interface



Chapter 4 38

in subsequent literature.

Since modifying HITS via usage statistics was suggested previously, original HITS as well as

the proposed, generalized version of HITS modified via usage statistics (UHITS, Section 2.3.2) are

implemented. The parameter space for UHITS is also sampled in increments of 0.25. Thus, in total,

5 hub score vectors, and 5 authority score vectors are calculated. Again, both hub and authority

score vectors when a = 0 are equivalent to their original HITS counterparts.

Two versions of the näıve approach (Section 2.3.3) are also implemented (Counts and MCounts).

In the first version, simple counts of number of visits to pages are used, i.e. each page is assigned

a score directly proportional to the number of times users visited the page. The second version

is similar: Analogous to UPR simple/modified counts approaches, instead of simple counts, log

transform of the counts (Eq. 2.11) aggregated through different time windows are used.

Table 2.1 summarizes the characteristics of the three usage based methods in terms of types of

information they use. Note that, in the case of UHITS and UPR, if the usage emphasis parameter(s)

are set to exactly 0 or 1, some of the information types are effectively ignored.

All of the methods and variations discussed above add up to 37 different quality measures (score

vectors). In Section 4.2, UPR is compared against PR by examining global scores and orderings

under varying usage emphasis factors. The effects of the simple counting vs. the modified counting

schemes are also examined in detail. Then, in Section 4.3, all score vectors are examined in terms

of global correlations among each other as well as the distinguishing power they offer. Finally, in

Section 4.4, a representative of each method is compared against others in a query dependent setting

via explicit user evaluations, focusing on the overall quality of these methods aggregated through

multiple queries.

In the following sections, Counts and MCounts denote the näıve quality measures using simple

and modified counts, PR denotes PageRank, UPR(a1, a2) denotes UPR with parameters a1 and a2,

UPR(a) denotes UPR with parameters a1 and a2, both set to a, and UHITS(a) aut/hub denotes

HITS authority/hub vectors with usage emphasis set to a.



4.1 Characteristics of the Dataset 39

4.1 Characteristics of the Dataset

The domain/site examined in this study, *.cs.umn.edu, is maintained by the Department of Com-

puter Science, University of Minnesota. Bulk of the departmental home pages, various infor-

mation sources/manuals, and some of the research projects/groups’ home pages are hosted on

www.cs.umn.edu. User homepages are mostly separated from the main www.cs.umn.edu servers

by a permanent redirect from www.cs.umn.edu/˜username to the corresponding location on www-

users.cs.umn.edu. Apart from these two major sub-domains, there are various smaller sub-domains

for different projects and research groups. www.cs.umn.edu, and www-users.cs.umn.edu are main-

tained by the department of Computer Science staff. Majority of the other domains are hosted on

different servers mostly maintained by the group they belong to. Extensive usage information via

full server access logs were available for www.cs.umn.edu and www-users.cs.umn.edu.

The final data set did not contain secure content, password protected portions, and the public

portions that were removed upon request by their owners. For these two sub-domains, more than

20K mostly static HTMLs were included in the final data set. Some of the dynamically generated

HTMLs, and other types of content that are not trivial to process/index (e.g. PS/PDF documents,

non-HTML presentations) were not included.

Usage statistics for most of the other sub-domains within *cs.umn.edu were unavailable at the

time the experiments were carried out. The data set contains peripheral pages within these do-

mains, as well as in other related domains within *.umn.edu, such as itlabs.umn.edu. Apart from

www.cs.umn.edu and www-users.cs.umn.edu, these peripheral pages/domains brought in an addi-

tional 45K+ static HTML pages. Reference to these pages and partial usage information (seen

through the available server logs) are used within some of the algorithms as they provide valuable

information. However, they are not included within the score vectors, and they are not searchable

from USearch.



4.2 Comparing PR vs UPR 40

4.2 Comparing PR vs UPR

4.2.1 Effects of Usage Emphasis

In the first set of experiments, the simple counting approach is used for obtaining the usage graph

(IP address and time stamp fields are ignored). As expected, depending on the emphasis factor

between the static structure graph and the usage graph, scores and relative ordering of pages deviate

from PageRank (PR) as usage emphasis is increased. www.cs.umn.edu contains a number of online

manuals and information pages for various applications and software, forming quite large “sub-

sites” with relatively high connectivity. For instance, every page in the manual may have a link

to the starting page of the manual as well as cross-links. However, most of these pages are hardly

accessed. Without introducing the usage graph, most of these pages as well as important pages for

presentations, discussion boards etc. dominates the top 100 positions using regular PR. For example,

out of 20 top ranked pages, 5 were Cisco documentation pages, 6 were Java JDK documentation

pages, and 2 were FAQ pages for online class discussions pointed by most of the class web pages.

Various Matlab documentation pages were also among the top 100 highest ranked pages. The

department’s main page itself, www.cs.umn.edu/, was ranked 136th in terms of pure PageRank

score.

As soon as usage information is introduced, department’s main page, as well as users’ and research

groups’ home pages start to rise in rank. The emphasis value is sampled in increments of .25 from

0 (pure structure based) to 1 (pure usage based). Both a1 and a2 are set to the same value in

order to limit the number of samples that needs to be examined manually. Figure 4.2 shows the

distribution of scores of all pages in log scale for these values of the parameters. Note that the core

20K documents are placed in the left portion of the figure as they have higher connectivity as well

as higher usage. The remaining URLs are peripheral pages, or pages that are pointed by/point to

the core but are hardly pointed by other pages within the data set. The positions and scores of

major pages with different emphasis values are examined further. Using an emphasis value of .25,

department’s home page is ranked 6th, and using a value of .5 and higher, it becomes the highest

ranked page. Note that, for a value of 0 corresponding to regular PageRank, it was in the 136th

position.

On the other extreme, as the emphasis on the usage graph is increased, a few pages start to

be ranked unintuitively high. In particular, using usage graph only (UPR(1)), the 2nd and the 3rd

highest scored URLs are:

• www-users.cs.umn.edu/˜*userone*/ip/



4.2.1 Effects of Usage Emphasis 41

0 1 2 3 4 5 6

x 104

10−5

10−4

10−3

10−2

10−1

sc
o

re
 in

 lo
g

 s
ca

le

URL number sorted by score

Distribution of scores with varying usage emphasis values

a=0.00
a=0.25
a=0.50
a=0.75
a=1.00

Figure 4.2. Log UPR scores of pages using simple counting scheme for different emphasis values between static and
usage based graphs



4.2.1 Effects of Usage Emphasis 42

• www-users.cs.umn.edu/˜*usertwo*/links.html

(Usernames are omitted for anonymity). These two pages are placed at the 6th and the 10th positions

for emphasis factor of 0.75 (a1=a2=0.75), and at the 10th and the 18th positions for emphasis factor

of 0.5). There are significant differences between the PR and UPR(1) scores of these pages. Moreover,

none of the two pages intuitively seem as important as other pages observed in top ranks. Upon

further examination, it turned out that the first page was a simple page, consisting of an IP number,

the dynamic IP number of that user’s home computer, uploaded by a script when it changes. This

page was accessed regularly to obtain the latest IP address of the user’s home computer. The second

page was a graduate student’s home page containing search boxes for a number of search engines

as well as various local and global links. We found out that the student and his colleagues had

the page bookmarked as their browsers’ home page, generating hits every time they open up a web

browser or issue a query. Other pages that are investigated in top positions were mostly intuitive

and subjectively important pages.

Next, focusing on the core set, the two extremes are compared by dividing the score of each

page using emphasis value of 0 by the score of the same page using emphasis value of 1 (pure

static vs. pure usage). The list is then sorted according to this ratio. The higher values (above

1) correspond to the pages that have relatively higher scores using the static structure graph; the

lower values (below 1) correspond to pages that have relatively higher scores using the usage graph.

The ratio for the whole collection of pages ranged from 0.0062 to 895.5. As a reminder, scores in all

implemented methods are L1 normalized and add up to 1. As expected, pages having the highest

ratios are mostly the manual pages. In fact, all the pages having a ratio above 100, except one, are

manual pages and two www board pages pointed to by almost all pages in various discussion boards.

In contrast, the pages that are in the bottom portion of the list were mostly department’s main

pages, user home pages, and research projects’ home pages. The two anonymized URLs mentioned

previously, as well as www.cs.umn.edu/, www.cs.umn.edu/users/, and www.cs.umn.edu/classes/ are

among the bottommost 20 pages. An interesting trend is that the bottom portion of the list was

mostly populated by many URLs having a “˜” (tilde) character inside, suggesting that these are

mostly user home pages (389 out of 500 pages that are investigated). Whereas the reverse was clearly

visible for the top portions of the list (only 79 out of 500 pages had a tilde character).



4.2.2 Effects of Modified Counting Scheme 43

4.2.2 Effects of Modified Counting Scheme

The experiments are repeated using the modified counting scheme while building the usage graph,

again, sampling the emphasis parameter in increments of 0.25, and setting both a1 and a2 to the

same value. In general, results obtained using the modified counting scheme are very similar to

the ones using the simple counting scheme. Overall order of majority of the pages remained stable,

except for a small portion of pages, which are typically accessed by very few users, but a large

number of times. For majority of the URLs, it was possible to find the same URL around the

same positions in the other list. The new distribution of scores is shown in Figure 4.3, which is

almost identical to Figure 4.2 (simple counting scheme). Department’s main page was again in

the 6th position for 0.25, and in the 1st position for values of 0.5, 0.75 and 1.0. In fact, the dot

product (when L2 normalization is used), Pearson correlation, as well as Spearman correlation of

UPR(1.0), UPR(0.75), and UPR(0.5) vectors using simple counting scheme vs. their counterparts

using modified counting scheme are all above 0.99. On the other hand, unlike most of the pages,

positions of the two pages mentioned in the previous case: www-users.cs.umn.edu/˜*userone*/ip/

and www-users.cs.umn.edu/˜*usertwo*/links.html are quite different in the corresponding new lists.

Using the modified counting scheme, they are placed in positions 130th and 40th for emphasis value

of 1.0, 180th and 67th for 0.75, and 329th and 116th for 0.50. Note that, in the previous case, they

were in positions 2nd and 3rd, 6th and 10th, and 10th and 18th respectively.

Full usage based scores (a1=a2=1.0) produced by simple counting vs. modified counting ap-

proaches are compared by dividing the UPR of a given page using simple counting scheme by the

UPR of the same page using modified counting scheme. The distribution of the ratios are shown

in Figure 4.4. The middle portion of the graph is almost flat and close to 1. Figure 4.5 further

focuses on the first 500 and the last 500 URLs for better visibility, removing the flatter portion.

The modified counting scheme does not change the overall order or scores of most of the URLs,

but it helps filter out URLs that are accessed by very few people many times. It also makes the

algorithm less spam prone, i.e. it would be harder for a user to boost the UPR of a page artificially

by generating large amount of traffic from a single source or a few sources.



4.2.2 Effects of Modified Counting Scheme 44

0 1 2 3 4 5 6

x 104

10−5

10−4

10−3

10−2

10−1

sc
o

re
 in

 lo
g

 s
ca

le

URL number sorted by score

Distribution of scores with varying usage emphasis values

a=0.00
a=0.25
a=0.50
a=0.75
a=1.00

Figure 4.3. Log UPR scores of pages using modified counting scheme for different emphasis values between static and
usage based graphs



4.2.2 Effects of Modified Counting Scheme 45

1 2 3 4 5 6

x 104

100

101

URL number sorted by UPRsimple/UPRmodified

lo
g

 s
ca

le
 U

P
R

si
m

p
le

/U
P

R
m

o
d

ifi
e

d

UPR ratio for simple vs modified counting approaches

Figure 4.4. Comparing UPR using simple counts vs. UPR using modified counts



4.2.2 Effects of Modified Counting Scheme 46

50 100 150 200 250 300 350 400 450 500

2

4

6

8

10

UPRsimple/UPRmodified, top 500 pages

6.52 6.525 6.53 6.535 6.54 6.545 6.55 6.555 6.56 6.565

x 104

0.87

0.88

0.89

0.9

0.91

0.92
UPRsimple/UPRmodified, bottom 500 pages

Figure 4.5. Comparing UPR using simple counts vs. UPR using modified counts, focusing on top and bottom 500 pages



4.3 Pairwise Comparison of Quality Measures 47

4.3 Pairwise Comparison of Quality Measures

In this experiment all score vectors are compared against each other in terms of global orderings,

the distinguishing power they offer, and how smooth/sharp the behavior of a method is when the

parameters are changed. Focusing on the 20K core URLs corresponding to www.cs.umn.edu and

www-users.cs.umn.edu domains, for each method pair, the following metrics are calculated:

• Pearson correlation

• Spearman correlation

• second norm of the difference vector

• cosine similarity (dot product)

Pearson correlation compares the score vectors produced by two methods and is defined as:

∑n

i=1
((xi − x̄)(yi − ȳ))

(n − 1)SxSy

(4.1)

where x and y are two variables (scores produced by methods x and y) with means x̄ and ȳ, and

standard deviations Sx and Sy respectively.

Spearman correlation uses rank order instead of scores and can be calculated using Equation

4.1 when scores are replaced by ranks. Pearson and Spearman correlations range from -1 to 1;

values closer to 0 suggesting poor correlation, and values closer to 1 (-1) suggesting stronger positive

(negative) correlation.

Provided that the vectors are L2 normalized, the dot product of two vectors x and y compares

their direction. For L2 normalized vectors, it reduces to the following formula:

n
∑

i=1

(xiyi) (4.2)

Note that the possible range for L2 normalized vectors with non-negative entries is [0, 1] (1 when

the two vectors have the same direction i.e. perfect similarity, 0 when the vectors are orthogonal).

Second norm of the difference vector is zero when the two vectors are identical, and increases as

they deviate from each other.

All score vectors are L1 normalized, except in the case of dot product, where L2 normalized

scores are used. Figures 4.6, 4.7, 4.8, and 4.9 summarizes the results for each method pair for the

above metrics. Ordering from left to right and top to bottom is as follows: rows/columns 1 and 2:

Counts, MCounts (näıve approaches), 3: PR (same as UPR(0,0)), 3-7: UPR(a1=0, a2=0 to 1), 8-12:

UPR(a1=0.25, a2=0 to 1), 13-17: UPR(a1=0.5, a2=0 to 1), 18-22: UPR(a1=0.75, a2=0 to 1), 23-27:



4.3 Pairwise Comparison of Quality Measures 48

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
hu

b(
1.

0)

Pearson Correlation
C

ou
nt

s
M

C
ou

nt
s

PR

U
PR

(0
.0

,.2
5)

U
PR

(0
.0

,.5
0)

U
PR

(0
.0

,.7
5)

U
PR

(0
.0

,1
.0

)

U
PR

(.2
5,

0.
0)

U
PR

(.2
5,

.2
5)

U
PR

(.2
5,

.5
0)

U
PR

(.2
5,

.7
5)

U
PR

(.2
5,

1.
0)

U
PR

(.5
0,

0.
0)

U
PR

(.5
0,

.2
5)

U
PR

(.5
0,

.5
0)

U
PR

(.5
0,

.7
5)

U
PR

(.5
0,

1.
0)

U
PR

(.7
5,

0.
0)

U
PR

(.7
5,

.2
5)

U
PR

(.7
5,

.5
0)

U
PR

(.7
5,

.7
5)

U
PR

(.7
5,

1.
0)

U
PR

(1
.0

,0
.0

)

U
PR

(1
.0

,.2
5)

U
PR

(1
.0

,.5
0)

U
PR

(1
.0

,.7
5)

U
PR

(1
.0

,1
.0

)
Au

t
U

au
t(.

25
)

U
au

t(.
50

)
U

au
t(.

75
)

U
au

t(1
.0

)
H

ub
U

hu
b(

.2
5)

U
hu

b(
.5

0)
U

hu
b(

.7
5)

Counts
MCounts

PR
UPR(0.0,.25)
UPR(0.0,.50)
UPR(0.0,.75)
UPR(0.0,1.0)
UPR(.25,0.0)
UPR(.25,.25)
UPR(.25,.50)
UPR(.25,.75)
UPR(.25,1.0)
UPR(.50,0.0)
UPR(.50,.25)
UPR(.50,.50)
UPR(.50,.75)
UPR(.50,1.0)
UPR(.75,0.0)
UPR(.75,.25)
UPR(.75,.50)
UPR(.75,.75)
UPR(.75,1.0)
UPR(1.0,0.0)
UPR(1.0,.25)
UPR(1.0,.50)
UPR(1.0,.75)
UPR(1.0,1.0)

Aut
Uaut(.25)
Uaut(.50)
Uaut(.75)
Uaut(1.0)

Hub
Uhub(.25)
Uhub(.50)
Uhub(.75)
Uhub(1.0)

Figure 4.6. Comparing scores: Pearson correlations



4.3 Pairwise Comparison of Quality Measures 49

−0.2

0

0.2

0.4

0.6

0.8

1

U
hu

b(
1.

0)

Spearman Correlation
C

ou
nt

s
M

C
ou

nt
s

PR

U
PR

(0
.0

,.2
5)

U
PR

(0
.0

,.5
0)

U
PR

(0
.0

,.7
5)

U
PR

(0
.0

,1
.0

)

U
PR

(.2
5,

0.
0)

U
PR

(.2
5,

.2
5)

U
PR

(.2
5,

.5
0)

U
PR

(.2
5,

.7
5)

U
PR

(.2
5,

1.
0)

U
PR

(.5
0,

0.
0)

U
PR

(.5
0,

.2
5)

U
PR

(.5
0,

.5
0)

U
PR

(.5
0,

.7
5)

U
PR

(.5
0,

1.
0)

U
PR

(.7
5,

0.
0)

U
PR

(.7
5,

.2
5)

U
PR

(.7
5,

.5
0)

U
PR

(.7
5,

.7
5)

U
PR

(.7
5,

1.
0)

U
PR

(1
.0

,0
.0

)

U
PR

(1
.0

,.2
5)

U
PR

(1
.0

,.5
0)

U
PR

(1
.0

,.7
5)

U
PR

(1
.0

,1
.0

)
Au

t
U

au
t(.

25
)

U
au

t(.
50

)
U

au
t(.

75
)

U
au

t(1
.0

)
H

ub
U

hu
b(

.2
5)

U
hu

b(
.5

0)
U

hu
b(

.7
5)

Counts
MCounts

PR
UPR(0.0,.25)
UPR(0.0,.50)
UPR(0.0,.75)
UPR(0.0,1.0)
UPR(.25,0.0)
UPR(.25,.25)
UPR(.25,.50)
UPR(.25,.75)
UPR(.25,1.0)
UPR(.50,0.0)
UPR(.50,.25)
UPR(.50,.50)
UPR(.50,.75)
UPR(.50,1.0)
UPR(.75,0.0)
UPR(.75,.25)
UPR(.75,.50)
UPR(.75,.75)
UPR(.75,1.0)
UPR(1.0,0.0)
UPR(1.0,.25)
UPR(1.0,.50)
UPR(1.0,.75)
UPR(1.0,1.0)

Aut
Uaut(.25)
Uaut(.50)
Uaut(.75)
Uaut(1.0)

Hub
Uhub(.25)
Uhub(.50)
Uhub(.75)
Uhub(1.0)

Figure 4.7. Comparing ordering: Spearman correlations



4.3 Pairwise Comparison of Quality Measures 50

0

0.2

0.4

0.6

0.8

1

1.2

U
hu

b(
1.

0)

Second Norm of differences
C

ou
nt

s
M

C
ou

nt
s

PR

U
PR

(0
.0

,.2
5)

U
PR

(0
.0

,.5
0)

U
PR

(0
.0

,.7
5)

U
PR

(0
.0

,1
.0

)

U
PR

(.2
5,

0.
0)

U
PR

(.2
5,

.2
5)

U
PR

(.2
5,

.5
0)

U
PR

(.2
5,

.7
5)

U
PR

(.2
5,

1.
0)

U
PR

(.5
0,

0.
0)

U
PR

(.5
0,

.2
5)

U
PR

(.5
0,

.5
0)

U
PR

(.5
0,

.7
5)

U
PR

(.5
0,

1.
0)

U
PR

(.7
5,

0.
0)

U
PR

(.7
5,

.2
5)

U
PR

(.7
5,

.5
0)

U
PR

(.7
5,

.7
5)

U
PR

(.7
5,

1.
0)

U
PR

(1
.0

,0
.0

)

U
PR

(1
.0

,.2
5)

U
PR

(1
.0

,.5
0)

U
PR

(1
.0

,.7
5)

U
PR

(1
.0

,1
.0

)
Au

t
U

au
t(.

25
)

U
au

t(.
50

)
U

au
t(.

75
)

U
au

t(1
.0

)
H

ub
U

hu
b(

.2
5)

U
hu

b(
.5

0)
U

hu
b(

.7
5)

Counts
MCounts

PR
UPR(0.0,.25)
UPR(0.0,.50)
UPR(0.0,.75)
UPR(0.0,1.0)
UPR(.25,0.0)
UPR(.25,.25)
UPR(.25,.50)
UPR(.25,.75)
UPR(.25,1.0)
UPR(.50,0.0)
UPR(.50,.25)
UPR(.50,.50)
UPR(.50,.75)
UPR(.50,1.0)
UPR(.75,0.0)
UPR(.75,.25)
UPR(.75,.50)
UPR(.75,.75)
UPR(.75,1.0)
UPR(1.0,0.0)
UPR(1.0,.25)
UPR(1.0,.50)
UPR(1.0,.75)
UPR(1.0,1.0)

Aut
Uaut(.25)
Uaut(.50)
Uaut(.75)
Uaut(1.0)

Hub
Uhub(.25)
Uhub(.50)
Uhub(.75)
Uhub(1.0)

Figure 4.8. Comparing differences scores: Second norm of the difference vector



4.3 Pairwise Comparison of Quality Measures 51

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
hu

b(
1.

0)

Dot Products
C

ou
nt

s
M

C
ou

nt
s

PR

U
PR

(0
.0

,.2
5)

U
PR

(0
.0

,.5
0)

U
PR

(0
.0

,.7
5)

U
PR

(0
.0

,1
.0

)

U
PR

(.2
5,

0.
0)

U
PR

(.2
5,

.2
5)

U
PR

(.2
5,

.5
0)

U
PR

(.2
5,

.7
5)

U
PR

(.2
5,

1.
0)

U
PR

(.5
0,

0.
0)

U
PR

(.5
0,

.2
5)

U
PR

(.5
0,

.5
0)

U
PR

(.5
0,

.7
5)

U
PR

(.5
0,

1.
0)

U
PR

(.7
5,

0.
0)

U
PR

(.7
5,

.2
5)

U
PR

(.7
5,

.5
0)

U
PR

(.7
5,

.7
5)

U
PR

(.7
5,

1.
0)

U
PR

(1
.0

,0
.0

)

U
PR

(1
.0

,.2
5)

U
PR

(1
.0

,.5
0)

U
PR

(1
.0

,.7
5)

U
PR

(1
.0

,1
.0

)
Au

t
U

au
t(.

25
)

U
au

t(.
50

)
U

au
t(.

75
)

U
au

t(1
.0

)
H

ub
U

hu
b(

.2
5)

U
hu

b(
.5

0)
U

hu
b(

.7
5)

Counts
MCounts

PR
UPR(0.0,.25)
UPR(0.0,.50)
UPR(0.0,.75)
UPR(0.0,1.0)
UPR(.25,0.0)
UPR(.25,.25)
UPR(.25,.50)
UPR(.25,.75)
UPR(.25,1.0)
UPR(.50,0.0)
UPR(.50,.25)
UPR(.50,.50)
UPR(.50,.75)
UPR(.50,1.0)
UPR(.75,0.0)
UPR(.75,.25)
UPR(.75,.50)
UPR(.75,.75)
UPR(.75,1.0)
UPR(1.0,0.0)
UPR(1.0,.25)
UPR(1.0,.50)
UPR(1.0,.75)
UPR(1.0,1.0)

Aut
Uaut(.25)
Uaut(.50)
Uaut(.75)
Uaut(1.0)

Hub
Uhub(.25)
Uhub(.50)
Uhub(.75)
Uhub(1.0)

Figure 4.9. Comparing scores: Dot produtcs (cosine similarity)



4.3 Pairwise Comparison of Quality Measures 52

UPR(a1=1, a2=0 to 1), 28: HITS authority (same as UHITS(0) authority), 28-32:UHITS(a=0 to

1), 33: HITS hub (same as UHITS(0) hub), 33-37 UHITS(a=0 to 1) hub.

Pearson correlation and dot product produces similar results. However, due to the nature of

score distributions in link analysis in general, relying only on the correlations in terms of scores may

be misleading. Pearson correlation and dot product effectively measures the correlation between

highly scored pages, while majority of the remaining pages have degrees of magnitude smaller scores,

practically negligible in comparison. Spearman correlation focuses on the ordering and provides a

different perspective. Even highly correlated score vectors may result in relatively different orderings.

For instance, UPR(0.5, 0.5) and Counts has a Pearson correlation of 0.96. However, the Spearman

correlation is significantly lower: 0.38. This effect is also observed while issuing queries. In majority

of the test queries, different methods suggested relatively different orderings, sometimes within the

top 5 positions, although the correlations in terms of global scores were relatively high.

Distinguishing Power and General Trends

Figures 4.10, 4.11, and 4.12 show the distribution of scores for pure PageRank, UPR(0.5), and

UPR(0.75) respectively. The y axis shows the score of the URL in log scale; the x axis shows the

URL number sorted by descending order of scores. Focusing on the core 20K URLs, PR and UPR

with all parameters except a2=1 are fairly successful in distinguishing between pages and offering a

smooth global ordering. One particular observation is that, the slopes of the distribution functions

are practically non-zero for these quality measures, suggesting that the number of pages having the

same or similar scores are relatively few. It is also observed that practically none of the core pages

are assigned a score of zero. Note that the core pages tend to appear on the left portion of the

figures as they have higher scores in general.

Figures 4.13 and 4.14 show the distribution of scores for the näıve approaches, Counts and

MCounts respectively. Unlike PageRank variants, it is observed that the distributions are not as

smooth as UPR or PR, and have a more step-like nature, especially for pages having a lower score.

Portions with a zero or close to zero slope in Figures 4.13 and 4.14 suggest that a relatively

large number of documents were assigned the same or similar scores using the näıve approaches.

Naturally, Counts/MCounts are also unable to distinguish between pages that are rarely used (zero

or very close to zero scores for these portions).

Figures 4.15, 4.16, 4.17, and 4.18 show the score distributions of selected HITS variants: HITS

authority, HITS hub, UHITS(0.75) authority, and UHITS(0.75) hub respectively. These Figures

suggest that HITS and HITS modified via usage, were the worst methods in terms of distinguishing

power between pages. Out of the 20K core pages, for some parameter values, scores of more than



4.3 Pairwise Comparison of Quality Measures 53

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

PR scores

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

PR scores

Figure 4.10. Distribution of PageRank scores



4.3 Pairwise Comparison of Quality Measures 54

 1e-05

 1e-04

 0.001

 0.01

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

UPR(0.50, 0.50) scores

 1e-05

 1e-04

 0.001

 0.01

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

UPR(0.50, 0.50) scores

Figure 4.11. Distribution of UPR(0.5, 0.5) scores



4.3 Pairwise Comparison of Quality Measures 55

 1e-05

 1e-04

 0.001

 0.01

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

UPR(0.75, 0.75) scores

 1e-05

 1e-04

 0.001

 0.01

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

UPR(0.75, 0.75) scores

Figure 4.12. Distribution of UPR(0.75, 0.75) scores



4.3 Pairwise Comparison of Quality Measures 56

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

Counts scores

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

Counts scores

Figure 4.13. Distribution of Counts scores



4.3 Pairwise Comparison of Quality Measures 57

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

MCounts scores

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

MCounts scores

Figure 4.14. Distribution of MCounts scores



4.3 Pairwise Comparison of Quality Measures 58

half of the pages converged to 0 using HITS variants. This effect is clearly visible in the case of

UHITS(0.75) authority and hub scores (Figures 4.17, and 4.18).

Effects of Usage Emphasis Parameters

Figures 4.6 and 4.7, suggest that UPR behaves smoothly as the parameters a1 and a2 range from 0

to 1. For parameter values close to 0, the correlation between UPR and PR is quite high; for higher

values, the correlation between UPR and the näıve approaches (Counts and MCounts) increases

gradually. Figures 4.19 and 4.20 compares URP(0.25) with PR, and UPR(0.75) with MCounts

respectively. The score of a document using one method is plotted against the score of the same

document using the other method.

One interesting observation in Figure 4.20, which compares UPR(0.75) vs. MCounts, is the

appearance of multiple horizontal (or close to horizontal) patterns. In these portions, MCounts

suggests the same or similar score for these document clusters, while UPR(0.75) is able to offer a

smooth range of scores. This observation is compatible with the individual score distributions (e.g.

UPR(0.75) in Figure 4.12, and MCounts in Figure 4.14). The horizontal patterns can be easily

attributed to the step-like portions of the MCounts score distribution (Figure 4.14).

No clearly visible horizontal patterns are observed while comparing PR and UPR(0.25) (Figure

4.19). This figure suggests that UPR(0.25) and PR shows reasonable correlation, especially in the

denser region. It also suggests that neither of the two methods are clearly better than the other in

terms of distinguishing power.

The behavior of UHITS authority as well as hub scores are not as smooth as UPR for varying

parameter values. Figures 4.6 and 4.7 suggest an abrupt change in behavior while moving from

UHITS(0.5) to UHITS(0.75), but for values below this threshold, it behaves almost identically

(similarly, UHITS(0.75) and UHITS(1.0) have almost the same behavior). Also, except UHITS(0.75)

and UHITS(1.0) authority vectors, HITS authority as well as hub scores are poorly correlated to

other methods, sometimes showing negative correlation.

Figures 4.21, 4.22, and 4.23 compares PR with HITS authority, UPR(0.25) with UHITS(0.25)

authority, UPR(0.75) with UHITS(0.75) hub, and Counts with UHITS(0.50) hub respectively. While

comparing HITS/UHITS variants against PageRank/UPR variants, horizontal line patterns observed

in the corresponding figures suggest that PR/UPR variants are better in distinguishing between

pages for these document clusters (they were able to provide a range of values, while the HITS

variatns offered the same/similar score). In general, while comparing PR and HITS variants, it is

observed that the the data points are rather scattered, suggesting relatively lower correlations.

Figure 4.24, comparing Counts vs. UHITS(0.50) hub is of particular interest. Both horizontal



4.3 Pairwise Comparison of Quality Measures 59

 1e-40

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

HITS authority scores

 1e-40

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

HITS authority scores

Figure 4.15. Distribution of HITS authority scores



4.3 Pairwise Comparison of Quality Measures 60

 1e-45

 1e-40

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

HITS hub scores

 1e-45

 1e-40

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

HITS hub scores

Figure 4.16. Distribution of HITS hub scores



4.3 Pairwise Comparison of Quality Measures 61

 1e-20

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

UHITS(0.75) authority scores

 1e-20

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

UHITS(0.75) authority scores

Figure 4.17. Distribution of UHITS(0.75) authority scores



4.3 Pairwise Comparison of Quality Measures 62

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

UHITS(0.75) hub scores

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 0  5000  10000  15000  20000  25000

S
co

re
 in

 lo
g 

sc
al

e

URL number sorted by score

UHITS(0.75) hub scores

Figure 4.18. Distribution of UHITS(0.75) hub scores



4.3 Pairwise Comparison of Quality Measures 63

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 1e-05  1e-04  0.001  0.01

P
R

 in
 lo

g 
sc

al
e

UPR(0.25) in log scale

Comparing PR vs. UPR(0.25)

Figure 4.19. Comparing UPR(0.25) and PR scores



4.3 Pairwise Comparison of Quality Measures 64

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1e-05  1e-04  0.001  0.01

M
C

ou
nt

s 
in

 lo
g 

sc
al

e

UPR(0.75) in log scale

Comparing MCounts vs. UPR(0.75)

Figure 4.20. Comparing UPR(0.75) and MCounts scores



4.3 Pairwise Comparison of Quality Measures 65

 1e-40

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 1e-06  1e-05  1e-04  0.001  0.01

H
IT

S
.a

ut
ho

rit
y 

in
 lo

g 
sc

al
e

PR in log scale

Comparing HITS.authority vs. PR

Figure 4.21. Comparing PR and HITS authority scores



4.3 Pairwise Comparison of Quality Measures 66

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 1e-05  1e-04  0.001  0.01

U
H

IT
S

(0
.2

5)
.a

ut
ho

rit
y 

in
 lo

g 
sc

al
e

UPR(0.25) in log scale

Comparing UHITS(0.25).authority vs. UPR(0.25)

Figure 4.22. Comparing UPR(0.25) and UHITS(0.25) authority scores



4.3 Pairwise Comparison of Quality Measures 67

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1e-05  1e-04  0.001  0.01

U
H

IT
S

(0
.7

5)
.h

ub
 in

 lo
g 

sc
al

e

UPR(0.75) in log scale

Comparing UHITS(0.75).hub vs. UPR(0.75)

Figure 4.23. Comparing UPR(0.75) and UHITS(0.75) hub scores



4.3 Pairwise Comparison of Quality Measures 68

as well as vertical line patterns are observed in this figure. This suggests that there were sets of

documents for which one method did not offer a distinction, while the other one was able to do so,

and vice versa.

The correlation between Counts and MCounts is very high in terms of scores and relatively high

in terms of orderings. Figure 4.25 compares the scores of the core 20K documents using Counts and

MCounts, while Figure 4.26 focuses on the positions of the documents using these two methods. It

is observed that a large portions of the documents are clustered on or around a line, especially when

plotted in terms of scores.



4.3 Pairwise Comparison of Quality Measures 69

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 1e-06  1e-05  1e-04  0.001  0.01  0.1

U
H

IT
S

(0
.5

0)
.h

ub
 in

 lo
g 

sc
al

e

Counts in log scale

Comparing UHITS(0.50).hub vs. Counts

Figure 4.24. Comparing Counts and UHITS(0.50) hub scores



4.3 Pairwise Comparison of Quality Measures 70

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1e-06  1e-05  1e-04  0.001  0.01  0.1

M
C

ou
nt

s 
in

 lo
g 

sc
al

e

Counts in log scale

Comparing MCounts vs. Counts

Figure 4.25. Comparing Counts and MCounts scores



4.3 Pairwise Comparison of Quality Measures 71

 0

 5000

 10000

 15000

 20000

 25000

 0  5000  10000  15000  20000  25000

M
C

ou
nt

s 
po

si
tio

n

Counts position

Comparing MCounts vs. Counts

Figure 4.26. Comparing Counts and MCounts ordering



4.4 Query Dependent Comparisons 72

4.4 Query Dependent Comparisons

Explicit as well as implicit relevance feedback have been used in various applications in information

retrieval and web search in evaluating the performance of different ranking methods. If explicit

user feedback is used, methods are evaluated according to the relevance judgements provided by

human experts for a selected subset of queries. This approach has the benefit of offering fairly

accurate results for the selected cases. However, due to practical reasons, only a small fraction of the

possible cases, queries, and users can be sampled. Evaluation methods based on simulated or implicit

relevance information have been proposed as an alternative in the lack of explicit judgements. These

approaches make use of statistics/observations that can be collected without user input, either by

simulating user judgements via alternative methods/measures [30] (e.g. cosine similarity, frequencies

of the query terms within the text etc.) or by inferring them [24, 36] (e.g. using position of clicked

documents, time spent reading a document etc.). Using automated implicit relevance feedback

approaches, although a larger number of users and query types can be sampled, the evaluations

tend to be less accurate per query, requiring a larger user base/evaluation period to offer statistical

significance.

USearch’s user base is not sufficiently large for automated evaluation approaches using implicit

relevance judgements. In this part of the experiments, 3 evaluation sets based on a total of 153

queries are offered: 1) A public evaluation, in which all users are welcome to participate, offering a

larger number of samples, but with possibly less accurate evaluation per query. 2) A smaller set of

relatively well-formed queries, thoroughly evaluated by at least two users per query, offering more

accurate evaluations, but fewer samples. 3) A set of queries independent of user judgements, in

which the correct answer(s) can be objectively specified before issuing the query. In this case, the

queries are limited to a specific query type (searching for a user’s home page by issuing the last

name as the query). The author (and the co-authors of the related paper [35]) did not participate

in these evaluations.

In order to compare different methods in a query based setting, a special version of USearch is

developed, in which the users can provide explicit relevance judgements for a given query. Note that

this version does not allow selection of methods, parameters, nor the number of links that will be

retrieved. All queries are ranked using cosine similarity only, and top 50 results are presented to the

user. As a reminder, USearch uses a reranking approach in which relevant items are first filtered

out using cosine similarity to the query, and then reranked using the selected quality measure by

combining the query similarity score with the selected quality measure by multiplying the two scores.

For instance, if PageRank is the selected quality measure, the final score of a document is obtained



4.4 Query Dependent Comparisons 73

by multiplying the query similarity score with the PageRank score. Since similarity to the query

was part of all ranking methods, it was a natural choice for a relatively “neutral” method to present

the results for evaluation purposes.

The procedure for evaluating a single query is as follows:

• The query is issued

• Top 50 results are returned using plain cosine similarity to the query (no additional quality

measures are used at this stage).

• User selects up to 5 relevant documents using the checkboxes next to them, and clicks on the

submission button once all the selections are satisfactory. Note that, if the submission button

is clicked prematurely or by accident, the user may invalidate the submission and start over.

• The same set of results are reranked using the methods under comparison.

• The new positions of the selected documents are recorded using each method. (A better

method places these documents in earlier positions in the list).

• Average positions of the selected documents are calculated for each method. (the smaller the

average, the better a given method is).

Evaluation version was announced in department’s mailing lists, inviting all graduate students,

and some of the faculty to participate. The participants were asked to issue queries they are confident

with, and not to assume that the most relevant links were placed in earlier positions. A total of

106 queries are collected for which approximately 3.2 links were selected as relevant on the average.

This set will be refered as the “public” evaluation set.

The next set of queries are selected via a small group of 5 users based on their interests and

familiarity. In this case, each of the queries were discussed beforehand, and at least two users

decided on what they were looking for before issuing the query (e.g. searching for a specific software

developed by a research group). Each query results were arbitrated by at least two users, and the

selection is done by careful examination of the full list. A total of 22 queries were issued. This set

will be refered as the “arbitrated” evaluation set.

Finally, the last set offers evaluations where relevant results could be objectively identified inde-

pendent of user judgements. 25 faculty and graduate student last names are randomly selected and

issued as queries. The “finger” utility is used to identify the usernames that has the selected text

as their last name. The queries are issued using all methods. The position of the first occurrence of

the URLs of the form /˜username/ and /˜username/index.html are noted for each user. If multiple

users have the same last name, the first page corresponding to each user is selected. The average

positions of the selected links using all methods are calculated for this set as well.



4.4 Query Dependent Comparisons 74

Sim PR UPR MCt Aut Hub UAu UHb

Public 8.1 10.1 9.0 10.3 12.9 11.8 11.6 9.9

Arbitrated 10.1 7.6 4.8 5.2 6.4 11.3 7.9 7.8

Names 3.0 4.8 3.0 3.1 6.7 10.8 8.0 6.4

Table 4.1. Average position of selected documents for different methods under each evaluation set (smaller is better).

The results of the three experiments are summarized in Table 4.1. The columns in the table

from left to right are: Cosine similarity only (no reranking), PageRank, UPR(0.75), MCounts (näıve

approach), HITS authorities, HITS hubs, UHITS(0.75) authorities, and UHITS(0.75) hubs. Note

that the first column shows the average position of the selected documents using the order in which

they are presented to the users (cosine). It is not one of the methods under comparison.

We would like to point out that, due to practical limit on number of samples that can be collected

via manual evaluations, the results may not be representative of majority of users or queries. Note

also that, types of queries that are selected for each of the evaluation sets tend to be quite different.

In the arbitrated set, queries were somewhat specific and well-formed, the correct answers were

mostly selected before issuing the query, and all results were carefully examined by at least two

of the participants. Evaluations for these queries are expected to be more accurate, and relatively

free of bias that may be associated with the order of presentation. The queries that are issued on

the public set, on the other hand, tend to be more general. Moreover, due to public nature of the

evaluations, the selection process should not be expected to be as thorough as the arbitrated set.

Possible bias due to order of presentation should also be investigated. Note that the last set (name

search) does not depend on user judgements nor on the order of presentation (bias is not applicable).

We observed that, in 12 of the queries issued during the public evaluation, the selected documents

were within the top 3 results presented using cosine similarity. Upon closer examination of these

queries, for a subset of them, we did not see an apparent reason why one of the subsequent links was

not considered as relevant. One possible explanation is that, if two or more links are subjectively

equally relevant, the user might have chosen the link that appeared first. It may also be the case

that, once a sufficient number of relevant links have been identified, some of the users may not have

examined the rest of the list in similar detail. If we remove a portion of the suspected queries, average

position of the cosine in the public set becomes slightly higher then UPR (in favor of UPR), but

still lower than the rest of the methods. However, we chose to rely on the subjective judgements of

the users, and not to modify/filter the public set unless the user explicitly invalidated a submission

(usually when the submission button is hit by accident).

The fact that the average position of cosine similarity being smaller than the rest of the methods

in the public set may suggest that at least some of the users could have been biased by the order



4.4 Query Dependent Comparisons 75

of presentation (towards cosine). This could suggest that, for this set, if the correlation between

cosine ordering and the ordering of a particular method is higher than the rest of the methods, this

particular method could have been favored by the evaluation process. We calculated the average

spearman correlation of the ordering using cosine vs. every other method for this particular set.

The average correlation was highest between Sim and UHITS hub (0.56), and ranged from 0.22 to

0.34 for the remaining methods except HITS authority (0.08). Reissuing sampled queries from the

public set using regular USearch, we noticed that, for a portion of the queries, UHITS hub was

not able to distinguish between URLs after top few documents. Thus cosine order was preserved

in the remaining portion of the list. This behavior was also observed using UHITS authority, but

to a lesser degree. Effectively, for some queries, UHITS hub and UHITS authority pulled up a

few highly connected/used URLs in top positions and kept the cosine order in the rest. If these

were the URLs that happened to be selected by the user (possible if the query searches for popular

pages), then these two methods performed relatively well. However, for other queries, they did not

perform significantly better than pure cosine. For PR, UPR, and MCounts, a similar behavior was

not observed, especially PR and UPR were able to offer a global ordering among the query results.

Note that these observations are compatible with the analysis in Section 4.2.

In all three sets, UPR performed better than the rest of the methods under comparison, while PR

and MCounts performed relatively well. UHITS hub’s and UHITS autority’s performance cannot be

reliably judged using the public set, as they failed to offer a distinction between pages, and may have

been favored by possible bias towards cosine for this particular set. A user independent observation

that follows from the results is that, UPR and MCounts place user home pages in relatively top

ranks compared to other quality measures. This is compatible with the early observation that these

pages are, in general, heavily used. Another observation is that, UPR, MCounts, and PR seem to

perform better than the rest of the quality measures, for the queries and the users sampled. They

also perform better than the HITS versions modified via usage except in the case of UHITS hub in

the public set.

Due to the nature of name search, it is expected that the cosine order produces reliable results

(users home pages are very likely to contain their last name in higher frequencies compared to a

random page). In this evaluation set, UPR performed as good as cosine ordering, while MCounts,

performed similarly, with a slightly higher average. In the public set, cosine similarity is better

than any of the methods, while UPR is slightly higher. However, there is reasonable indiction that,

for at least 10% of the queries, the users might have been biased by the presentation order. In

the arbitrated set, in which presentation bias is less likely to occur, UPR (and MCounts) perform

significantly better than other methods (including cosine ordering). Note that, for this set, all



4.5 Summary 76

methods, except HITS Hub, perform better than cosine as well.

4.5 Summary

In this chapter, all methods are first examined in terms of distinguishing power they offer, and how

smooth they behave under various parameter values. Extensive global and pairwise comparisons

showed that PageRank variants are stable, offering distinguishing power between pages, and pro-

viding a smooth global ordering. It is also verified that at one end of the possible values for the

parameters a1 and a2, UPR behaves similar to PageRank, and on the other end, it gets more and

more correlated to pure usage based näıve methods. Counts/MCounts also offer decent distinguish-

ing power, but they are not as smooth as PageRank variants. HITS variants were the worst methods

among the ones compared, failing to offer distinguishing power for a large subset of pages (in some

cases, converging to zero for more than half of the data set). Also, their behavior under different

parameter values were not as stable and smooth as other methods.

A representative of each method is then compared against others in a query dependent setting

using explicit user judgements in two evaluation sets: 1) a public evaluation open to all participants,

offering larger number of samples, but potentially less accurate results, also being more prone to

bias. 2) An arbitrated set, offering a thorough evaluation by at least two users for a smaller set

of queries, less prone to bias, but offering fewer samples. A third set for a specific query type

(name search) is also provided, in which the relevant documents can be identified independent of

user judgements. Results showed that UPR performed better than all methods, while MCounts and

PageRank performed better than the remaining in most cases.



Chapter 5 77

Chapter 5

Discussions and

Future Directions

*.cs.umn.edu domain is reasonably sized for a departmental home page/site, but it is easily dwarfed

compared to large corporate intranets. It may be very interesting to test the proposed methods or

others on a larger scale or on different domains, where some of the issues that do not appear in our

data set may surface (e.g. partial usage information, uneven sampling, and significantly higher usage

based voluntary/involuntary perturbations and spamming). However, obtaining usage information

from an organization has serious security and privacy issues that would not be easily addressed in an

academic research environment. Organizations may perform a similar study themselves and publish

a summary of the results, but in this case, it would be significantly more difficult to reproduce the

findings. Future research in the area of usage statistics in search is likely to face the above challenges.

5.1 Quality Signals and Search

Almost all desirable quality signals in search have a good benefit to cost ratio. The benefit can be

measured in a number of ways in terms of the improvements in ranking quality, and the cost can

be measured in terms of number of cases in which the signal actually harms the ranking quality,

and by how much. Although there is not a widely used benchmark in the literature, one may easily

develop a number of metrics reflecting the above, examining the signals from different perspectives.

A good quality signal should ideally offer high benefit at no cost. However, this is practically never

the case in real life. In general, aggressiveness of a signal and the parameters controlling/combining

signals are adjusted in a way that the benefit to cost ratio is kept within a reasonable range.

It is also important to note that recent search engines potentially employ/combine a large number



5.1 Quality Signals and Search 78

of quality signals. The benefit of each signal should be evaluated separately as well as in conjunction

with other signals. Given two signals may be quite strong independently, but, when combined

together with other signals, may not improve the quality significantly. For example, they may be

highly correlated, and once one is included, the other may not offer a significant additional benefit.

However, this does not suggest that one of the signals (e.g. the one that is added later on while the

other is already being used) is inferior. In general, search engines should have a pool of signals that

are continuously evaluated. Depending on the dynamics, a signal that is left out as redundant may

become important in the future, or may replace one that became weaker. The best combination

strategies may also change in time.

The signals examined in this study were selected among the ones that seemed likely to be pri-

mary/core signals for the domain in focus. These are:

• Cosine similarity, a simple but effective information retrieval relevance score.

• Usage statistics, a popularity signal reflecting the preferences/perspective of the users.

• Link analysis, which can be considered as a popularity signal from the point of view of page

authors (Although this distinction may be blurred with increased use of Blogger [5], WikiWeb

[52], and other facilities making it practical for the users to modify or append to online pages).

Other signals improving or complementing some of the above, as well as more orthogonal signals

are possible. Some of these signals may also be domain specific. This study primarily examined

the intelligent combination of two of the core signals, specifically, merging link analysis with usage

statistics into one signal by a reasonably complex approach. The resultant signal (UPR or UHITS)

is then combined with cosine similarity using a simple approach. This is, by no means, an exhaustive

exploration. The method selection and various choices were informed ones, limiting the scope of the

analysis to a manageable size, aiming to start by exploring the baseline and the methods that showed

more promise. One possible alternative that was not examined in this study is to treat all three

signals independently first, and then combine them. This approach, and various other possibilities

for combining the above signals were out of the scope of this study, and may be worth considering

for future research.



5.2 Usage Signals and Web Search 79

5.2 Usage Signals and Web Search

Although, the focus in this study was the applicability on a site specific search setting, UPR and

similar usage based or augmented signals can also be applied on a global scale if usage statistics can

be collected via specialized browsers/tools such as Google Toolbar, or via caching proxies. Usage

statistics would not be complete (only a small portion of users can potentially be sampled using

current approaches), and the sampling process may introduce additional bias. For example, users of

a particular search engine and its tools may be less likely to visit pages in competitors; or computer

and security aware users may be more likely to minimize their online presence, choosing a higher

level of privacy, hence end up being under-represented. Nevertheless, usage information is available

to a number of search engines, and it can potentially be an important signal for Web scale search

as well.

In terms of computation in large scale, the process required for incorporation of usage statistics

in one way of another is not significantly different than other signals already used in modern search

engines. For example, without going into specific details, implementing UPR on a large scale should

not be a technical challenge for a leading search engine company such as Google, which already

has significant infrastructure that can be used to facilitate distributed/parallel computation such

as [11,14].

5.2.1 Usage Based Spamming

During the early days of Web search engines, one could boost the score of a page by modifying the

page alone (adding/removing keywords, modifying the frequencies etc.). In recent search engines

using link analysis, in order to boost the score of a page considerably, one needs to boost the link

structure around that page, requiring modification of a number of pages as opposed to a single

page. Hence, link analysis is historically considered to offer relative resistance against spamming

compared to the early, simple approaches. If usage augmented link analysis algorithms are used,

not only pages/links must be created/modified around the page that one desires to boost, these

pages/links should also have relatively high usage, offering an additional signal that can be used

against spamming. The other side of the coin is that, by introducing a new type of information (link

analysis), a new door that can be abused has been opened (link based spamming). Similarly, adding

usage information among the signals opens up a new, potential way of perturbing the results (usage

based spamming).

UPR formulation offers relative resistance against all types of usage based spamming that are

investigated in this study (unlike previous attempts [56, 33], which offered none). An improvement



5.2.1 Usage Based Spamming 80

is also proposed, deemphasizing pages and links that are visited by few users many times, and

emphasizing the ones that are used by various users. This improvement does not change the overall

rankings of majority of the pages, but helps in filtering out a small subset of pages that are accessed by

very few people many times. When UPR is applied with the proposed improvement and appropriate

parameters, in order to boost the score of a page significantly, not only one needs to build a link

structure around that page (a “link farm”), but also, the pages/links need to be supported via a

sustained traffic received from a number of distinct sources.

In Web search, usage based spam (or click spam), is becoming an increasing problem, especially

when advertisement and commercial queries are involved. Various heuristics or machine learning

techniques can be used to identify usage based spam, or to reduce its effects. The approach used

in this study (log transform of counts, deemphasizing the contribution of a single entity in a given

time window) is a reasonable approach for the domain in focus. One may also imagine various

alternatives that may be equally viable; or ones that are better suited for other domains. As an

example. if excessive spam is expected, more aggressive approaches may offer a better solution (e.g.

a binary: contribution of 0 or 1 per entity per time window). It is also possible to treat a given IP

block or set of IPs as a single entity. Machine learning approaches used for detecting automated

agents/robots (e.g. [45]), may also be adapted to this domain.

Spamming will potentially continue to be a problem in search when significant commercial ben-

efits/losses are involved. For any given algorithm or signal, it should be possible to devise a scheme

to exploit it somehow. One of the reasonable strategies search engines may employ could involve

effectively increasing the cost of spamming, hence reducing the incentive for it. One of the questions

with regards to usage statistics in Web search is that, is it possible to find a set of usage spam

prevention techniques/algorithms that will increase the effective cost of the overall exploits? Or

will it make it actually easier than existing spamming approaches? It is reasonable to argue that

usage augmented link analysis techniques could increase the cost of link based spamming (since not

only a link farm needs to be build, but also, pages/links need to be supported by a sustained usage

from multiple sources). However, it may very well be the case that usage based spamming may

actually be cheaper than link based spamming. All of these factors affect the benefit to cost ratio

of usage based signals, and need to be taken into consideration while determining to what extend

usage information can be effectively used in Web search.

Spamming is not a real issue within intranets. Changes in benefit to cost ratio for this signal due

to spamming is not as important as it can potentially be in Web search. Intranet search engines may

readily incorporate usage information with minimal spam/perturbation resistance, and potentially

add a strong signal for improving ranking quality.



Chapter 6 81

Chapter 6

Concluding Remarks

A number of usage based ranking approaches (UPR, UHITS, and Counts/MCounts) are introduced

in this study. These approaches make use of different types of usage and static linkage information.

UPR and regular PageRank are compared against each other in detail, providing intuition about the

types of pages that are favored by these two methods, and examining the effects of adding increasing

amount of usage information. All usage based methods are also compared against each other and

against classical approaches (PageRank and HITS). The behavior of different methods, their ability

to distinguish between pages, how smooth/sharp the effects of a given parameter is, and for which

parameter values a given method is more/less correlated with other methods are examined in detail.

A representative of each method are also compared in a query based setting using blind evaluations,

as well as using a name based search setting, independent of user judgements.

6.1 Usage Information in Site Specific/Intranet Search

Intranets tend to have relatively poorer connectivity compared to the Web, potentially reducing

the effectiveness of link analysis approaches that worked reasonably well for Web search. This

study explored the possibility to use usage statistics as an additional signal in intranet/site specific

search domain. A number of usage based approaches are introduced and implemented. Two of

these methods modify and augment popular link analysis approaches that are already examined

in the literature extensively (PageRank and HITS). Two näıve methods, Counts and MCounts,

are also implemented, providing a pure usage based baseline benchmark to compare against. The

näıve methods are similar in spirit to the ranking approach used in an early commercial search

engine, DirectHit, but employ complete usage statistics as opposed to being limited to search result

clicks. The proposed methods are also selected to offer reasonable diversity in terms of the types of



6.1.1 UPR, a Promising Signal for Intranet Search 82

information they use: UPR uses page visit statistics, as well as link traversal statistics (combined

with static linkage structure); UHITS uses link traversal statistics (and static linkage information)

only; and Counts/MCounts are purely based on usage, employing page visit statistics only.

Compared to Web search engines which have a limited view in terms of usage statistics (through

specialized tools, browsers, proxies etc.), the owner of a site/intranet can potentially have access

to extensive usage logs. This may not be practically true for all intranets today due to distributed

servers and potential lack of coordination within the organization. However, the data is there, and it

belongs to the organization. If there is a motivation, processing the logs is not a technical challenge.

For example, each server (or cluster of servers) responsible for a unique portion of the intranet

may process its view of the usage graph and send the compressed information to a central location

that carries out the ranking computations. Note that the graphs can be combined without loss of

information under certain conditions. For example, if multiple servers are responsible for a given

resource, one possible approach is to aggregate their logs for that resource before applying time

window analysis if non linear functions such as log transform of counts are used. After this step,

the entry for that resource can be readily merged with other resources.

6.1.1 UPR, a Promising Signal for Intranet Search

Experimental results suggest that among the methods that are examined, UPR performs consistently

better than other methods, has a number of desirable properties, improves the ranking quality for

a large number of cases over existing signals, and did not practically hurt the quality under any

circumstance (even when compared against cosine similarity, which may have a presentation bias in

one experiment (public evaluation set), and is favored in another (name search) due to the specific

query type). UPR, a combined signal using both link analysis and usage statistics, shows promising

potential as a well-behaving signal for this domain, offering significant quality improvements over a

set of query types, with almost no cost at others.

UPR has a number of properties that previous attempts of incorporating usage information into

link analysis [56,33] failed to address: Ability to control usage emphasis smoothly, relative resistance

against usage based spamming, scalability, offering a global ordering, and ability to work with limited

usage gracefully. The formulation inherits basic PageRank properties. It is intuitive, general, and

flexible. Usage emphasis can be controlled smoothly via the two UPR parameters. Experiments

suggest that, unlike UHITS, UPR’s behavior can be adjusted smoothly from pure static structure

based to pure usage based ranking.

The formulation is also quite inexpensive and scalable. Usage graph can be updated incrementally

and efficiently. UPR iterations are only a small constant times more expensive than PageRank



6.1.1 UPR, a Promising Signal for Intranet Search 83

iterations in terms of speed and storage. An optimization is also proposed (Eq. 2.12) that further

speeds up the iterations, making them comparable to PageRank iterations.

UPR can be used in the presence of partial information. Although scores of pages for which

limited usage statistics are available can be lower than what they would be in the presence of

full usage statistics, if these pages are pointed to by highly ranked pages, their scores will still be

relatively high. Unlike methods that apply usage statistics to boost the scores per page basis (e.g.

counting number of hits to a page and using it as a quality measure), UPR scores of pages are

gradually affected as less and less usage statistics are available, converging to regular PR at the

extreme case.

Unlike Web search, an important property of intranets is that, in general, there is little or no

incentive for spamming the results within a single organization. In this particular domain, usage

signals and usage augmented link analysis, even employing modest spam/perturbation prevention

techniques, may easily offer a reliable signal with a desirable benefit to cost ratio. Usage signals

may become one of the strongest signals for enterprise search in the future.



BIBLIOGRAPHY 84

Bibliography

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In J. B. Bocca,

M. Jarke, and C. Zaniolo, editors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages

487–499. Morgan Kaufmann, 12–15 1994.

[2] F. Anklesaria, M. McCahill, P. Lindner, D. Johnson, D. Torrey, and B. Alberti. The internet

gopher protocol (a distributed document search and retrieval protocol, rfc 1436). 1993.

[3] T. Berners-Lee, R. Fielding, U. Irvine, and L. Masinter. Uniform Resource Identifiers (URI):

Generic Syntax, RFC2396. 1998.

[4] K. Bharat and M. R. Henzinger. Improved algorithms for topic distillation in a hyperlinked

environment. In Proceedings of the 21st Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 104–111, 1998.

[5] Blogger. http://www.blogger.com/.

[6] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas. Finding authorities and hubs

from link structures on the world wide web. In World Wide Web, pages 415–429, 2001.

[7] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine. Computer

Networks and ISDN Systems, 30(1–7):107–117, 1998.

[8] K. G. Coffman and A. M. Odlyzko. Growth of the internet. Optical Fiber Telecommunications

IV B: Systems and Impairments, pages 17–56, 2002.

[9] cURL. http://curl.haxx.se/.

[10] M. Cutler, Y. Shih, and W. Meng. Using the structure of HTML documents to improve retrieval.

USENIX symposium on Internet Technologies and Systems (NISTS’97), pages 241–251, 1997.



BIBLIOGRAPHY 85

[11] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. OSDI’04:

Sixth Symposium on Operating System Design and Implementation, San Fransico, CA, Decem-

ber 2004.

[12] Directhit. http://www.directhit.com/.

[13] R. Fagin, R. Kumar, K. S. McCurley, J. Novak, D. Sivakumar, J. A. Tomlin, and D. P.

Williamson. Searching the Workplace Web. In WWW12 Conference Proceedings”, May 20–24,

2003, Hungary, 2003.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. 19th ACM Symposium on

Operating Systems Principles, Lake George, NY, October 2003.

[15] D. Gibson, J. M. Kleinberg, and P. Raghavan. Inferring Web Communities from Link Topol-

ogy. In Proceedings of the 9th ACM Conference on Hypertext and Hypermedia, pages 225–234,

Pittsburgh, Pennsylvania, June 1998.

[16] Google. http://www.google.com/.

[17] J. Han and M. Kamber. Data Mining: concepts and techniques, pages 437–439. Morgan

Kaufmann, 2001.

[18] D. Harman and G. Candela. Retrieving records from a gigabyte of text on a minicomputer

using statistical ranking. American Society for Information Science, 41(8):581–589, 1990.

[19] T. Haveliwala. Topic-sensitive pagerank. In Proceedings of the Eleventh International World

Wide Web Conference, Honolulu, Hawaii, May 2002.

[20] T. Haveliwala. Efficient computation of pagerank. Technical Report 1999-31, Stanford Digital

Library Technologies Project, 1999.

[21] HTTrack. http://www.httrack.com/.

[22] G. Jeh and J. Widom. Scaling Personalized Web Search. In WWW12 Conference Proceedings”,

May 20–24, 2003, Hungary, 2003.

[23] S. D. Kamvar, T. H. Haveliwala, and C. D. Manning. Extrapolation Methods for Accelerating

PageRank Computations. In WWW12 Conference Proceedings, May 20–24, 2003, Hungary,

2003.

[24] J. Kim, D. Oard, and K. Romanik. Using implicit feedback for user modeling in internet and

intranet searching, 2000.



BIBLIOGRAPHY 86

[25] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM,

46(5):604–632, 1999.

[26] L. Kleinrock. Information flow in large communications networks. RLE Quartely Progress

Report, July 1961.

[27] M. Koster. A Standard for Robot Exclusion, http://www.robotstxt.org/wc/norobots.html.

1999.

[28] S. Kumar, B. U. Oztekin, L. Ertoz, S. Singhal, E.-H. Han, and V. Kumar. Personalized profile

based search interface with ranked and clustered display. In 2001 International Conference on

Intelligent Agents Web Technologies and Internet Commerce - IAWTIC’2001.

[29] R. Lempel and S. Moran. The Stochastic Approach for Link-Structure Analysis (SALSA) and

the TKC Effect. In WWW9 Conference Proceedings”, May 15 - 19, 2000, Amsterdam, 2000.

[30] L. Li and L. Shang. Statistical performance evaluation of search engines. In WWW10 conference

posters, May 2–5, 2001, Hong Kong.

[31] C. D. Manning and H. Schtze. Foundations of Statistical Natural Language Processing, chap-

ter 5. MIT Press, 1999.

[32] MEARF. http://mearf.cs.umn.edu/.

[33] J. Miller, G. Rae, and F. Schaefer. Modifications of Kleinberg’s HITS Algorithm Using Matrix

Exponentiation and WebLog Records. In ACM SIGIR Conference posters, September 9-13,

2001, New Orleans, Louisiana, USA, pages 444–445.

[34] G. Newby. Information space based on HTML structure. In TREC9, 2000.

[35] B. U. Oztekin, L. Ertoz, V. Kumar, and J. Srivastava. Usage Aware PageRank. In WWW12

conference posters”, May 20–24, 2003, Hungary, 2003.

[36] B. U. Oztekin, G. Karypis, and V. Kumar. Expert agreement and content based reranking in a

meta search environment using Mearf. In proceedings of the Eleventh International World Wide

Web Conference, May 7–11, 2002, Honolulu, Hawaii.

[37] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order

to the web. Technical report, Stanford Digital Library Technologies Project, 1998.

[38] Pavuk. http://www.idata.sk/ ∼ondrej/pavuk/.



BIBLIOGRAPHY 87

[39] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[40] W. Recommendation. HTML 4.01 Specification, http://www.w3.org/TR/html4/. 1999.

[41] M. Richardson and P. Domingos. The Intelligent Surfer: Probabilistic Combination of Link and

Content Information in PageRank. In Advances in Neural Information Processing Systems 14,

2002.

[42] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Information

Processing and Management, 24(5):513–523, 1988.

[43] A. Schapira. Collaboratively searching the web – an initial study. Master’s thesis, 1999.

[44] SWISH-E. http://swish-e.org/.

[45] P.-N. Tan and V. Kumar. Discovery of web robot sessions based on their navigational pat-

terns. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, volume 6, pages 9–35, 2002.

[46] A. S. Tanenbaum. Computer Networks, Third Edition. Prentice-Hall, 1996.

[47] Teoma. http://www.teoma.com/.

[48] USearch. http://usearch.cs.umn.edu/.

[49] C. van Rijsbergen. Information Retrieval, Second Edition. Butterworths, 1979.

[50] W3C. Cascading style sheets, http://www.w3.org/Style/CSS/. 1999.

[51] Wget. http://www.gnu.org/software/wget/wget.html.

[52] Wikiweb. http://www.wikiweb.com/.

[53] R. H. Zakon. Hobbes’ internet timeline, http://www.zakon.org/robert/internet/timeline/.

[54] B.-T. Zhang and Y.-W. Seo. Personalized web-document filtering using reinforcement learning.

Applied Artificial Intelligence, 15(7):665–685, 2001.

[55] M. Zhang, R. Song, and S. Ma. DF or IDF? On the Use of HTML Primary Feature Fields for

Web IR. In WWW12 conference posters, May 20–24, 2003, Budapest, Hungary.

[56] J. Zhu, J. Hong, and J. G. Hughes. Pagerate: counting web users’ votes. In Proceedings of the

12th ACM Conference on Hypertext and Hypermedia, pages 131–132, Arhus, Denmark, 2001.


