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ABSTRACT 

 The current study aimed to identify the key neurobiology of Attention-

Deficit/Hyperactivity Disorder (ADHD), as it relates to ADHD diagnostic category and 

symptoms of hyperactive/impulsive behavior and inattention. To do so, we adapted a 

predictive modeling approach to identify the key structural  and diffusion weighted brain 

imaging measures, and their relative standing with respect to teacher ratings of 

executive function – EF (measured by the Metacognition Index of the Behavior Rating 

Inventory of Executive Function– BRIEF), negativity and emotion regulation – ER 

(measured by the Emotion Regulation Checklist, ERC), in a critical young age range 

(ages 4 to 7, mean age 5.52 years, 82.2% Hispanic/Latino), where initial contact with 

educators and clinicians typically take place. Teacher ratings of EF and ER were 

predictive of both ADHD diagnostic category and symptoms of hyperactive/impulsive 

behavior and inattention. Among the neural measures evaluated, the current study 

identified the critical importance of the largely understudied diffusion weighted imaging 

measures for the underlying neurobiology of ADHD and its associated symptomology. 

Specifically, our analyses implicated the inferior frontal gyrus, the pericallosal sulcus, 

and the caudate as critical predictors of ADHD diagnostic category and its associated 

symptomology, above and beyond teacher ratings of EF and ER. Collectively, the 

current set of findings have implications for theories of ADHD, the relative utility of 

neurobiological measures with respect to teacher ratings of EF and ER, and the 

developmental trajectory of its underlying neurobiology. 

Keywords: ADHD: structural brain imaging: diffusion weighted imaging: neurite density: 

machine learning: 
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INTRODUCTION  

Attention-Deficit/Hyperactivity Disorder (ADHD) is a developmental disorder that 

affects over 7% of children worldwide (Wolraich et al., 2019). The etiology of ADHD at 

the neurobiological level is not well-established, although there is a general consensus 

that frontal, parietal, basal ganglia, and cerebellar regions of the dopaminergic system, 

as well as some of the fiber pathways facilitating functional interactions among these 

brain regions, are affected. These regions also support cognitive and affective 

processes that are often impaired in children with ADHD, such as executive function 

(EF) and emotion regulation (ER). EF, which is an umbrella term for the cognitive 

processes such as attentional control, inhibitory control, and performance monitoring 

necessary for voluntary control of behavior, is a prominent, though not universal, feature 

of ADHD pathophysiology (Barkley, 1997; Sergeant, 2000; Sonuga-Barke, 2002). With 

respect to the neurobiological markers that support EF, prior research has pointed to 

functional interactions among lateral frontal, inferior frontal/insular (Aron et al., 2004), 

medial frontal/anterior cingulate/pre-SMA (Aron et al., 2004; Bunge & Wright, 2007; 

Fedota et al., 2014; Miller & Cohen, 2001; Rushworth et al., 2005), lateral parietal 

(Corbetta & Shulman, 2002), and dorsal striatal (Morein-Zamir & Robbins, 2015) 

regions of the brain (Hart et al., 2014).  

ER, or dysregulation, is also a prominent behavioral profile in pediatric ADHD 

(Barkley & Fischer, 2010; Graziano & Garcia, 2016; Karalunas et al., 2019; Shaw et al., 

2003). Notably, a meta-analysis carried out by Graziano and Garcia (Graziano & 

Garcia, 2016) demonstrated that ER deficits were independent of co-occurring conduct 

problems and were in similar or greater magnitude with respect to the EF deficits 
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observed among children with ADHD. The importance of such ER deficits are in line 

with theories of ADHD that have suggested EF-related effects might not emerge in the 

young age range evaluated in the current study, and that subcortical regions that 

support ER might be crucially important for the early onset of ADHD (Halperin & Schulz, 

2006). Indeed, findings from recent neural investigations (Hoogman et al., 2020; 

Oztekin et al., 2021) provide support for the contention that a primary focus on the 

neurobiology of EF alone might not be sufficient, and not sensitive to the heterogeneity 

of developmental trajectories of ADHD, especially in the critical young age range 

assessed in the current study. Thus, when considering the predictive utility of 

neurobiological markers for ADHD, it appears important and necessary to conjointly 

consider the underlying neural mechanisms that support EF and ER. The neurobiology 

of ER processes constitutes functional interactions of the medial and dorsal prefrontal 

cortical structures, anterior cingulate cortex, and medial orbitofrontal cortex with 

amygdala (Albaugh et al., 2013; Beauregard et al., 2001; Davidson & Slagter, 2000; 

Lane & McRae, 2004). The major fiber pathways supporting connectivity among these 

regions are the uncinate fasciculus (connecting amygdala with lateral and orbital and 

medial prefrontal cortex, e.g., (Pacheco et al., 2009) and the cingulum (connecting 

amygdala with medial frontal and cingulate, e.g., see (Jones et al., 2013).  

In line with this contention, the current study adapted a predictive modeling 

approach that leverages machine learning to evaluate the utility of target measures of 

EF and ER (neurobiology of EF and ER, along with teacher ratings of EF and ER) in 

predicting the early onset of ADHD in children ages 4 to 7. Specifically, the present 

study evaluates the incremental predictive value of the target neurobiology in 
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comparison to the target measures of teacher ratings of EF and ER in this young age 

range as it relates to 1) diagnostic classification of ADHD, and 2) ADHD symptomology 

of inattention and hyperactive/impulsive behavior dimensionally (see Petrovic & 

Castellanos, 2016; Woo et al., 2017 for a critical overview of the importance of 

dimensional approaches in clinical neuroscience).  

Our assessment of neurobiology using a machine learning approach leverages 

structural brain imaging measures, as well as diffusion-weighted imaging measures of 

neurite density and fractional anisotropy in three fiber pathways of importance to ADHD 

in this ange range (Cooper et al., 2015; Frodl & Skokauskas, 2012; Garic et al., 2019; 

Graziano et al., 2021; Jones et al., 2013; Konrad & Eickhoff, 2010; Nagel et al., 2011; 

Peterson et al., 2011; van Ewijk et al., 2012), namely the frontal aslant tract (FAT), 

cingulum, and the uncinate fasciculus (UF). In addition to assessing the predictive 

performance of the target measures, we further evaluated their relative importance. Our 

main hypothesis was that the identified critical neurobiology for predicting ADHD 

diagnostic category would extend to regions important for both EF and ER, and that the 

critical neurobiology for predicting diagnostic category would also hold a reliable 

relationship with dimensional symptoms of hyperactive/impulsive behavior and 

inattention. Our third goal was to further identify the neurobiology that contributes to 

differentiating ADHD diagnostic category and symptomology above and beyond the 

utility provided by teacher ratings alone. 

Our study leverages a unique sample, the ADHD Heterogeneity of Executive 

Function and Emotion Regulation Across Development (AHEAD) study, which aims to 

characterize the heterogeneity of well-established predictors of ADHD among young 
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children (ages 4-7, mean age 5.52, 82.2% Hispanic/Latino) across multiple levels of 

analysis. Notably, AHEAD is among the first to scan children with ADHD as young as 4-

7 years, where early diagnosis is critically important (see also Jacobson et al., 2018; 

Rosch et al., 2018; for notable prior studies with an older age range focus, see Fair et 

al., 2012; Karalunas et al., 2014; Karalunas et al., 2019; Qureshi et al., 2016; Qureshi et 

al., 2017). With its multimodal imaging approach, it further provides a unique opportunity 

to evaluate structural brain imaging and diffusion-weighted imaging metrics conjointly, 

and how they compare to critical measures of teacher ratings (for both EF and ER) of 

high importance in this very young age range.  

MATERIALS AND METHODS 

Participants and Recruitment 

Children and their caregivers were recruited from local schools and mental health 

agencies via brochures, radio and newspaper ads, and open houses/parent workshops. 

Legal guardians contacted the clinic and were directed to the study staff for screening 

questions to determine eligibility. For the ADHD sample, if the parent (1) endorsed 

clinically significant levels of ADHD symptoms (six or more symptoms of either 

Inattention or Hyperactivity/Impulsivity according to the DSM-5 OR a previous diagnosis 

of ADHD), (2) indicated that the child is currently displaying clinically significant 

academic, behavioral, or social impairments as measured by a score of 3 or higher on a 

seven-point impairment rating scale (Fabiano et al., 2006), and (3) were not taking any 

psychotropic medication, the parent and child were invited to participate in an 

assessment to determine study eligibility. For the typically developing sample, if the 

parent (1) endorsed less than 4 ADHD symptoms (across either Inattention or 
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Hyperactivity/Impulsivity according to the DSM-5), (2) less than 4 Oppositional Defiant 

Disorder (ODD) symptoms, and (3) indicated no clinically significant impairment (score 

below 3 on the impairment rating scale), the parent and child were invited to participate 

in an assessment to determine study eligibility. Participants were also required to be 

enrolled in school during the previous year, have an estimated IQ of 70 or higher, have 

no confirmed history of an Autism Spectrum Disorder, and be able to attend an 8-week 

summer treatment program prior to the start of the next school year (ADHD groups 

only).  Due to the young age of the sample, only disruptive behavior disorders were 

extensively examined for diagnostic purposes.  

During intake, ADHD diagnosis (and comorbid disruptive behavior disorders) was 

assessed through a combination of parent structured interview (Shaffer et al., 2000) and 

parent and teacher ratings of symptoms and impairment (Fabiano et al., 2006) as is 

recommended practice (Pelham et al., 2005). Specifically, the DBD rating scales and 

diagnostic interview were combined using an “or rule,” which identifies the presence of a 

symptom if endorsed by either informant while clinically significant problems at home 

and school were defined by at least a “3” on a “0 to 6” impairment rating scale (Bird et 

al., 1992; Sibley et al., 2016). Dual Ph.D. level clinician review was used to determine 

diagnosis. Of relevance to the current study, the BRIEF rating scale was not used for 

any diagnostic purposes. The analyses reported in this paper included 180 children who 

had data available from all the behavioral and neural target measures of interest, 

described further below. Our sample comprises of 85 children with ADHD (47.2%), and 

95 (52.8%) typically developing children. Among the participants with ADHD, 59 
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(69.4%) had comorbid ODD diagnosis. Parental consent and assent were obtained in 

accordance with the Office of Research Integrity at Florida International University. 

Target Measures 

Teacher Ratings of Executive Function and Emotion Regulation. We used the 

Emergent Metacognition Index (MCI) t-score from the Behavior Rating Inventory of 

Executive Function, both Child and Preschool versions (BRIEF Child & BRIEF-P; Gioia, 

Espy & Isquith, 2003, Cronbach’s alpha .99) for our measure of teacher ratings of 

executive function. The MCI is thought to reflect the ability to maintain information 

and/or activities in working memory, as well as to plan and organize problem-solving 

approaches. In the BRIEF Preschool, the MCI is composed of the Working Memory and 

Plan/Organize scales. In the BRIEF Child, the MCI is composed of the Initiate, Working 

Memory, Plan/Organize, Organization of Materials, and Monitor scales.  We used the 

Emotion Regulation and Negativity z-scores from the Emotion Regulation Checklist 

(ERC; Shields & Cicchetti, 1997, Cronbach’s alpha .99) as our target measures for 

teacher ratings of emotion regulation in our sample. 

Neural Measures. Our neurobiological measures of interest include structural 

brain imaging measures of cortical thickness, volume, surface area, and curvature, as 

well as diffusion-weighted imaging measures of neurite density and fractional anisotropy 

in the three fiber pathways assessed, namely the frontal aslant tract, the cingulum, and 

the uncinate fasciculus bilaterally. Due to our theoretical focus on EF and ER, our paper 

primarily focuses on the neurobiology of EF and ER (cortical, subcortical volume and 

neurite density, see Figure 1). However, we also report machine learning models on the 
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whole brain measures in Supplementary Materials (interested readers can refer to 

Supplementary Table 1 for performance metrics derived from whole brain measures). 

All imaging was performed using a research-dedicated 3 Tesla 

Siemens MAGNETOM Prisma MRI scanner (V11C) with a 32-channel coil located on 

the university campus. Children first completed a preparatory phase using realistic mock 

scanner in the room across the hall from the magnet. Here they were trained to 

stay still, and were also acclimated to the enclosed space of the magnet, the back 

projection visual presentation system, and to the scanner noises (in this case, 

presented with headphones). When they were properly trained and acclimated, they 

were moved to the magnet. In the magnet, during the structural scans, children watched 

a child-friendly movie of their choice. Ear protection was used, and sound was 

presented through MRI compatible headphones.  

Structural MRI scans were collected using a 3D T1-weighted sequence (axial; 1 x 

1 x 1 mm, 7 min 14 sec) with prospective motion correction (Siemens vNAV; Tisdall et 

al., 2012), according to the Adolescent Brain and Cognitive Development (ABCD) 

protocol (Hagler Jr et al., 2019). To provide a semi-automated parcellation of the 

cerebral cortices and volume of subcortical structures, we constructed two-dimensional 

surface renderings of each participant's brain using FreeSurfer v6.0 (Dale et al., 1999; 

Fischl & Dale, 2000). We computed cortical thickness as part of the standard FreeSurfer 

reconstruction pipeline (Rohde et al., 2004), as this has been shown to have high 

correspondence to histological measurements of cortical thickness (Yeh et al., 2010).  

Diffusion Weighted (DW) scans were acquired via high-angular resolution 

diffusion imaging (HARDI) with B0 EPI distortion correction (EPIC; TR/TE = 4100/88 ms; 
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1.7 mm x 1.7mm x 1.7mm; 81 slices no gap; 102 diffusion directions: b = 500 (6-dirs); 

1500 (15-dirs); 2000 (15-dirs); 3000 (76-dirs) s/mm2; A-to-P direction (7 m 31 s). Using 

the TORTOISE DIFFPREP and DRBUDDI software, and DTI_Prep (Rohde et al., 

2004), DW images were processed for motion correction, to remove eddy current 

artifacts, to correct for EPI B0 susceptibility deformations, to conduct B-matrix 

reorientation, and to co-register the diffusion series with structural MRI.  

Initial quality control was accomplished in DTIPrep to complete the following 

steps: 1) image/diffusion information check; 2) padding/cropping of data; 3) Rician noise 

removal; 4) slice-wise, interlace-wise, and gradient-wise intensity and motion checking. 

In this step, inter-slice brightness artifact detection is accomplished via normalized 

correlation analysis between successive slices. In addition, interlaced correlation 

analysis is used for detection and removal of “venetian blind” artifacts. An automated 

kick-out procedure was used to reject and remove bad diffusion acquisitions that met 

criteria for removal, using the default settings. The number of remaining diffusion scans 

was used a proxy for movement/scan quality. Eddy current correction was not applied at 

this phase. Instead, in the second phase, the corrected data were ported from DTIPrep 

into TORTOISE DIFFPREP, which was used to accomplish motion and eddy current 

correction. The data were not resampled to a template space, but were kept in the 

original subject space. In the third phase, FSL topup was used to correct for EPI 

distortions using the field map, which was collected in the opposite phase encoding 

direction of the main scan (Andersson et al., 2003; Smith et al., 2004). In the fourth 

phase, we implemented calculation of the diffusion tensor model in DSI Studio to 

estimate the eigenvalues reflecting diffusion parallel and perpendicular to each of the 
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fibers along 3 axes (x, y, z). The resulting eigenvalues were then used to compute 

indices of fractional anisotropy (FA). 

Fiber Tract Identification 

Tractography was conducted either using DSI Studio’s built-in tractography atlas 

(Yeh et al., 2018; for the cingulum and uncinate fasciculus), or (for the frontal aslant) by 

use of ROI-to-ROI tracking using a modification of the Freesurfer atlas. The DSI Studio 

built-in tractography atlas was originally created from 840 healthy adults in the HCP840 

dataset, and defines white matter regions of interest (ROIs) in the MNI space. The atlas 

is then non-linearly warped to the native participant space (Yeh et al., 2018). Because 

we are analyzing a pediatric dataset, each ROI was visually inspected to ensure that 

any warping to the atlas template did not introduce inaccuracies. Within this atlas the, 

following two tracts are defined: 

Uncinate fasciculus (UF). UF has rostral terminations projecting to the orbital and 

lateral frontal cortex, to the frontal pole, and to the anterior cingulate gyrus (mainly BAs 

10, 11, 32, and 47). The posterior termination in the temporal lobe includes projections 

through the amygdala, with terminations in the temporal pole (BA 38), uncus (BA 35), 

and parahippocampal gyrus (BA 30 and 36) (Dick et al., 2013; Holl et al., 2011; 

Thiebaut de Schotten et al., 2012; Von Der Heide et al., 2013). 

Cingulum. The cingulum as a whole is composed of a number of smaller short 

association fiber systems that course in the white matter under the cingulate gyrus. The 

pathway supports connections to/from lateral and dorsal prefrontal cortex, medial 

prefrontal cortex and anterior cingulate, insula, parahippocampal gyrus, subiculum, and 

amygdala (Jones et al., 2013). 
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Manual ROI-to-ROI tracking was used for the frontal aslant tract, to better isolate 

fibers terminating/originating in the pre-Supplementary Motor Area (pre-SMA) and 

posterior inferior frontal gyrus. 

Frontal Aslant Tract (FAT). FAT is a monosynaptic fiber pathway connecting the lateral 

inferior frontal cortex with the medial superior frontal gyrus, and possibily cingulate 

gyrus. Most of the tract is comprised of fibers connecting the pars opercularis with the 

functionally-defined pre-supplementary motor area (pre-SMA) (Dick et al., 2019). We 

used a semi-automated approach to define regions of interest (ROIs) for tractography of 

the frontal aslant. FreeSurfer v6.0 was used for the initial cortical parcellation and 

cortical segmentation. Next, the Desikan-Killiany Freesurfer atlas (Desikan et al., 2006) 

for each participant was modified using the procedure specified by Cammoun et al. 

(Cammoun et al., 2012), originally defined by Hagmann et al. (Hagmann et al., 2008). In 

this procedure, the larger ROIs from the Freesurfer parcellation are further divided into 

smaller units (collectively these atlas modifications are called the Lausanne atlases). 

We used the modification defining 463 total ROIs, which allowed a finer parcellation of 

the superior frontal gyrus, allowing for a more accurate subdivision of the pre-SMA and 

SMA. For the current analysis, the fibers passing to/from the pre-SMA and pars 

opercularis were defined. An angular threshold of 40 degrees was employed, with 

1,000,000 seeds set as the termination threshold. 

Neurite orientation dispersion and density imaging (NODDI) Metrics 

With a multi-shell DWI HARDI acquisition it is possible to quantify tissue 

microstructure in terms of neurite orientation and density. The Neurite Orientation 

Dispersion and Density Imaging (NODDI) model is a three-component model that 
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distinguishes the effects on water diffusion in different cellular environments (intra-neurite, 

extra-neurite, and cerebrospinal fluid (Jespersen et al., 2010; Jespersen et al., 2012; 

Zhang et al., 2012). The NODDI model allows estimation of the contributions of neurite 

morphology from the diffusion signal, and such estimates such as neurite density from 

the NODDI model have been verified with histology in animals (Sato et al., 2017) and 

pathological findings in humans (Sone et al., 2020). In the present study we focus on the 

orientation dispersion index (ODI) and the intraneurite volume fraction (INVF) measure, 

which in gray matter is an index of dendritic and axonal density. In some models this INVF 

measure is also referred to as the neurite density index (NDI), which is the terminology 

we will adapt. We computed the ODI and NDI metrics using the Microstructure Diffusion 

Toolbox (Harms et al., 2017; Harms & Roebroeck, 2018). With the DWI data set 

registered to the high-resolution anatomy in original subject space, we computed the 

average NDI for each region of interest defined by our segmentation algorithms.   

Quality Control of Magnetic Resonance Imaging Scans. Movement artifacts in 

T1-weighted MRI scans are common, especially in pediatric populations in this age 

range, and especially in children with ADHD. Fortunately, FreeSurfer is robust to 

movement-related artifacts, as, except in extreme cases, the program is able to 

accurately identify intensity differences between white matter and grey matter inherent 

in the T1-weighted image. In some cases, however, manual intervention is necessary. 

In this manual intervention, each individual MRI scan is inspected, and in cases where 

the program does not adequately identify the appropriate regional boundaries, manual 

edits are employed. We also visually rated each T1-weighted image on a seven-point 

scale ranging from “Poor = 1” to “Excellent = 4”, with allowances for half-points (e.g., 
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3.5). For diffusion-weighted imaging scans, we used the number of directions kept as an 

indicator for scan quality/movement. These quality measures (T1 scan quality for 

structural imaging measures of cortical thickness, volume, surface area and curvature 

and number of directions kept for DWI measures of neurite density and fractional 

anisotropy in the fiber pathways assessed) were used as covariates in data analyses. 

Outcome Measures 

 Machine learning models assessed ADHD diagnostic category (ADHD present, 

ADHD absent). Regression analyses assessed ADHD symptomology on a continuum, 

evaluating symptoms of hyperactive/impulsive behavior and inattention.  

Predictive Modeling Approach 

We employed the scikit-learn (version 0.23.1, https://scikit-learn.org/stable/) 

open-source machine learning library for constructing our models. In order to be able to 

extract feature importance from classifier coefficients, we adapted a Support Vector 

Machine (Cortes & Vapnik, 1995) classifier with a linear kernel. For each model, target 

features were scaled using the StandardScaler function in scikit-learn library, which 

standardizes features by removing the mean and scaling to unit variance. For model 

validation, we leveraged the built-in cross-validation function of the scikit-learn library. In 

this approach, the data is split into training and test sets. This is repeated five times, 

using different portions of the data as training and test. Specifically, in each iteration, the 

classifier is tested on a portion of the data set that it did not see during training, 

following the recommended approach in the field (Varoquaux, 2018; Varoquaux et al., 

2017). Performance was then evaluated with the commonly employed accuracy scores, 

as well as F1 scores obtained across the cross-validation indices for each model. F1 
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scores are a classification performance metric that is calculated based on the precision 

(p) and recall (r), 𝐹1 = !"#
"$#

. Following the recommended practice in the field, our 

assessment of statistical significance employed permutation tests (Combrisson & Jerbi, 

2015; Noirhomme et al., 2014; Pereira et al., 2009). 

 Recursive Feature Elimination (RFE). RFE (Guyon et al., 2002) is a 

recommended feature selection method that has been previously applied in machine 

learning applications of ADHD (Arbabshirani et al., 2017; Colby et al., 2012; Qureshi et 

al., 2016; Qureshi et al., 2017; Tan et al., 2017). RFE leverages the coefficients of the 

classifier in order to select features by recursively considering smaller and smaller set of 

features. In each iteration, the importance of each feature is derived, and the least 

important features are pruned from the current set of features. This procedure is 

recursively repeated on the pruned set until the optimum number of features are 

selected. Thus, for structural (cortical and subcortical volume) and microstructure (NDI 

and ODI) measures that contain EF and ER regions, as well as our whole-brain 

analyses containing all regions of the Destrieux parcellation reported in our 

Supplementary Materials, we employed recursive feature elimination with cross-

validation (RFECV function in scikit-learn library) to identify the optimum set of features 

that are most informative for predicting ADHD diagnostic category.  

Regression Analyses 

 To further evaluate the relationship between our target measures and ADHD 

symptomology, we conducted linear regressions using the OLS function in statsmodels 

library (version 0.11.0) in Python. For each outcome variable (symptoms of 

hyperactive/impulsive behavior, symptoms of inattention), separate models were run for 
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each set of target measures (teacher ratings of EF and ER, neural measures of volume, 

neurite density, and fractional anisotropy target pathways¾ FAT, cingulum, and UF). 

Age and gender were entered as covariates in all regression analyses. In addition, for 

analyses that assessed neural measures, whole brain volume and scan quality (T1 

quality for structural brain imaging measures, and the number of directions kept for 

diffusion weighted imaging measures) were included as covariates in the model.  

Overview of Analytical Approach 

 In summary, our analytical approach adapted the following steps: 1) Use 

machine learning to determine the relative performance of the target measures in 

predicting ADHD diagnostic category; 2) For measures that can significantly predict 

diagnostic category, carry out regression analyses to assess if they can further predict 

ADHD symptomology (symptoms of hyperactive/impulsive behavior and inattention).  

RESULTS 

Predicting ADHD diagnostic category 

We first assessed the relative predictive utility of the teacher ratings of executive 

function (BRIEF), emotion regulation (ERC), and the neural measures for predicting 

ADHD diagnostic category. For this categorical assessment, we trained an SVM to 

distinguish the TD and ADHD participants. As explained in our Methods section, for 

neural measures, a feature selection approach that employed recursive feature 

elimination over the entire set of features was initially adapted to identify the optimum 

set of target features in predicting ADHD diagnostic category. Below we present our 

findings across the models. Figure 2 plots the classifier success for predicting ADHD 

diagnostic category across our primary target models, and Supplementary Table 1 
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presents the classifier performance metrics for the whole brain measures. Figures 3-5 

represent the selected EF and ER regions for our neural metrics, along with their 

feature importance rankings derived from the classifier coefficients. 

The model including the teacher ratings of BRIEF MCI yielded the highest 

classifier performance, with an average accuracy of .922 (p < .001) across the five 

cross-validation indices. Teacher ratings of emotion regulation derived from the ERC 

reached an accuracy of .822 (p < .001). For our structural brain imaging measures of 

cortical and subcortical volume in EF and ER regions, the classifier achieved an 

average performance of .644 (p < .002). The classifier reached the following accuracy 

for the diffusion weighted imaging measures: .667 (p < .001) for NDI in EF and ER 

regions, .656 for ODI in EF and ER regions, .583 (p < .028) for fractional anisotropy in 

UF, .528 (p > .660) for the fractional anisotropy in FAT, and .522 (p > .610) for fractional 

anisotropy in cingulum. Thus, our machine learning approach has identified teacher 

ratings of EF and ER, as well as the corresponding neurobiological measures of cortical 

and subcortical volume, neurite density (both NDI and ODI), and fractional anisotropy in 

the UF pathway as significant predictors of ADHD diagnostic category. 

Predicting symptoms of hyperactive/impulsive behavior and inattention 

Next, we sought to identify the degree to which our target measures contribute to 

dimensional constructs of ADHD, namely symptoms of hyperactive/impulsive behavior 

and inattention, assessing each set of the target measures (teacher ratings, structural 

imaging measures of volume, diffusion weighted imaging measures of NDI, ODI, and 

fractional anisotropy in the target fiber pathways). We ran separate linear regressions 

predicting hyperactivity and inattention symptomology, with these target measures 
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entered into the model as predictors, with age and gender also included as covariates. 

For analyses that included neural measures as target predictors, we also included total 

intracranial volume and scan quality as covariates. For structural imaging measures of 

volume, this included the scan quality rating for the T1 scan. For diffusion imaging 

measures (NDI, ODI, and fractional anisotropy in fiber pathways), this included the 

number of directions kept, after automated quality control, for the diffusion-weighted 

scan. Below, we outline the measures that showed statistically reliable relationship with 

ADHD symptomology.  

Teacher Ratings. Our analysis of the three teacher rating measures (BRIEF MCI, 

emotion regulation z score in ERC, and negativity z-score in ERC) indicated a reliable 

relationship between each target measure and symptoms of inattention and 

hyperactive/impulsive behavior. Specifically, BRIEF MCI ratings had a positive 

relationship with hyperactivite/impulsive behavior (t(174) = 4.567, p < .001) and 

inattention symptomology (t(174) = 5.583, p < .001). Similarly, the negativity z-score in 

the ERC also yielded a reliable positive relationship for both hyperactive/impulsive 

behavior (t(174) = 7.912, p < .001) and inattention (t(174) = 6.395, p < .048). The 

emotion regulation z-score measure from the ERC exhibited a negative relationship with 

symptoms of hyperactive/impulsive behavior (t(174) = -8.316, p < .001) and inattention 

(t(174) = -6.727, p < .001).  

Structural Imaging Measures of Volume. Among the EF and ER regions identified 

by our RFE approach, the regions that were reliable predictors of both 

hyperactive/impulsive behavior and inattention symptoms were the left caudate (t(162) = 

-1.986, p < .049 for hyperactivity; t(162) = -2.677 , p < .008 for inattention),  the left 
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pericallosal sulcus (t(162) = -2.592, p < .010 for hyperactivity; t(162) = -2.014, p < .046 

for inattention), the right inferior frontal gyrus – pars triangularis ( t(162) = 3.287, p < 

.001 for hyperactivity; t(162) = 2.794, p < .006 for inattention), and the right angular 

gyrus (t(162) = -3.642, p < .044 for hyperactivity; t(162) = -2.210, p < .029 for 

inattention). In addition to these regions that showed reliable relationship with both 

symptoms, the left inferior frontal gyrus – pars opercularis (t(162) = -2.198, p < .029) 

and the left inferior frontal gyrus – pars orbitalis were associated with symptoms of 

hyperactive/impulsive behavior (t(162) = 2.095, p < .038), while the left anterior segment 

of the circular sulcus of the insula (t(162) = -2.114, p < .036) and the right caudate 

(t(162) = 2.136, p < .034) were associated with symptoms of inattention.  

Diffusion Weighted Imaging Measures of NDI and ODI. Among the EF and ER 

regions identified by our RFE approach, several regions further showed reliable 

relationship with both hyperactive/impulsive behavior and inattention symptoms of 

ADHD. For NDI, these regions were the left rectus gyrus (t(148) = 3.313, p < .001 for 

hyperactive/impulsive behavior; t(148) = 3.981, p < .001 for inattention) and the right 

inferior frontal gyrus – pars orbitalis (t(148) = -3.026, p < .003 for hyperactive/impulsive 

behavior; t(148) = -3.246, p < .001 for inattention). For ODI, these regions also included 

the left rectus gyrus (t(162) = 2.379, p < .019 for hyperactive/impulsive behavior; t(162) 

= 3.199, p < .002 for inattention) and the right inferior frontal gyrus – pars orbitalis 

(t(162) = -2.600, p < .010 for hyperactivity; t(162) = -3.644, p < .001 for inattention). ODI 

metrics further implicated the left anterior cingulate to predict both symptoms (t(162) = -

2.972, p < .003 for hyperactive/impulsive behavior; t(162) = -3.323, p < .001 for 

inattention). Additionally, NDI in the right anterior cingulate cortex exhibited a reliable 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.23.21263990doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21263990


 

 20 

relationship with symptoms of hyperactive/impulsive behavior (t(148) = -2.137, p < 

.034). Further regions that exhibited significant relationships with symptoms of 

inattention were the right superior frontal gyrus for NDI (t(148) = 2.080, p < .039), as 

well as the left middle frontal gyrus (t(162) = 2.018, p < .045) and bilateral inferior frontal 

gyri – pars triangularis (t(162) = -2.155, p < .033 for the left hemisphere, and t(162) = -

2.029, p < .044 for the right hemisphere) for ODI. 

Diffusion Weighted Imaging Measures of FA in Fiber Pathways. Among the three 

pathways assessed (FAT, UF and the cingulum), our machine learning results had 

implicated the UF to be the only pathway that can significantly predict diagnostic 

category. Additional regression analyses assessing the relationship between fiber 

pathway FA and ADHD symptomology indicated no reliable/measurable relationship for 

any of the pathways evaluated.  

Incremental benefit of the identified target measures in predicting ADHD 

symptomology. Upon identifying the target measures that can reliably predict both 

ADHD diagnostic category and symptomology, we next evaluated the incremental value 

across the teacher ratings and the implicated neurobiology in predicting ADHD 

symptomology. That is, does the implicated neurobiology of EF and ER have a benefit 

above and beyond teacher ratings of EF and ER in predicting ADHD symptomology? 

And if so, what are the regions that provide this additional benefit for each critical 

measure of ADHD symptomology? To this end, we assessed a full model that included 

all the significant measures identified above, and we further evaluated changes in 

adjusted-R2 in our models as we add each critical set of predictors (see Table 1). We 

constructed two full models that included all the target measures that were identified to 
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significantly predict both ADHD diagnostic category and symptom severity 

dimensionally for each of the symptoms of hyperactive/impulsive behavior and 

inattention associated with ADHD. For each analysis, we also included our control 

variables of age, gender, total intracranial volume, T1 scan quality, and DWI scan 

quality. Our goal was to evaluate which measures would still hold a statistically reliable 

relationship with ADHD symptomology when all the implicated measures were 

assessed conjointly in these full models. 

For symptoms of hyperactive/impulsive behavior, all teacher variables 

maintained a reliable relationship (t(159) = 3.478, p < .001 for BRIEF EMC t scores, 

t(159) = 5.971, p < .001 for ERC z scores of negativity, and t(159) = -6.279, p < .001 for 

ERC z scores of emotion regulation). Additionally, neurobiological measures that were 

still reliable were the left pericallosal sulcus volume (t(159) = -2.567, p < .011), the left 

inferior frontal gyrus – pars orbitalis volume (t(159) = 3.026, p < .003), NDI in the right 

inferior frontal gyrus – pars orbitalis (t(159) = -2.159, p < .032), and ODI in the left 

anterior cingulate cortex (t(159) = -2.222, p < .028). 

For symptoms of inattention, the target variables that remained statistically 

reliable were BRIEF EMC (t(155) = 4.952, p < .001), ERC negativity (t(155) = 3.833, p < 

.001), ERC emotion regulation (t(155) = -4.060, p < .001), left caudate volume (t(155) = 

-2.166, p < .032), and NDI in the right inferior frontal gyrus – pars orbitalis (t(155) = -

2.419 , p < .017). 

Thus, when considering the additional benefit of neurobiological measures for 

predicting ADHD symptomology above and beyond the target teacher rating measures 

of EF and ER, our results implicate the right inferior frontal gyrus (specifically the pars 
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orbitalis) as a region that predicts for both symptoms of inattention and 

hyperactive/impulsive behavior, the left caudate for symptoms of inattention, as well as 

the left pericallosal sulcus, the left inferior frontal gyrus and the left anterior cingulate 

cortex as additional regions associated with hyperactive/impulsive behavior.  

Addressing comorbid ODD in the ADHD sample 

So far we have assessed our main goal of identifying the relative importance of 

our target measures for predicting ADHD diagnostic category and ADHD symptomology 

of hyperactivite/impulsive and inattention. Recall that our ADHD sample has 69.4% 

comorbid ODD. Thus, when considering the overall clinical utility of the target measures 

assessed in the current study, an important question arises regarding if they have any 

further predictive utility for differentiating comorbid ODD in the ADHD sample. To 

address this question, we ran additional models that assess the degree to which a 

classifier can successfully predict the presence of comorbid ODD in the ADHD sample. 

Accordingly, using the same modeling protocol above, a classifier was trained to 

distinguish between ADHD only versus ADHD+ODD diagnosis in our ADHD sample, 

using the same target measures employed for the analyses reported above. 

Teacher Ratings. Two models were trained to assess the performance of the 

classifier in predicting comorbid ODD diagnosis based on the BRIEF teacher ratings of 

executive function, and ERC teacher ratings of emotion regulation and negativity. 

Among the two models assessed, only the ERC model achieved a reliable classifier 

performance, with an average accuracy of .741 (p < .001). Accordingly, our findings 

indicate that while a strong predictor of ADHD diagnostic category and symptomology, 

BRIEF ratings of executive function might not have predictive utility in further 
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distinguishing comorbid ODD diagnosis within the ADHD sample. ERC ratings on the 

other hand might be a more suitable indicator of comorbid ODD diagnosis. 

Neural Measures. We ran six models to assess the predictive utility of our neural 

measures in predicting comorbid ODD diagnosis. These models each evaluated the 

selected regions for structural imaging measures of volume, DWI measures of NDI, and 

DWI measures of ODI, identified for predicting ADHD diagnostic category reported 

above, as well as the fractional anisotropy in the target fiber pathways, namely FAT, 

cingulum, and UF. None of these models were able to reliably predict comorbid ODD  

within our ADHD sample. Thus, our findings indicate that the implicated neurobiology 

important for predicting ADHD diagnostic category did not have further predictive utility 

in predicting comorbid ODD diagnosis.  

DISCUSSION 

 The current investigation provided a unique assessment of the 

neurobiology of ADHD in comparison with teacher ratings of EF and ER in a very young 

age range (ages 4-to-7), as they relate to predicting ADHD diagnostic category and 

ADHD symptomology of hyperactive/impulsive behavior and inattention. We used 

machine learning to evaluate structural brain imaging measures, as well as diffusion 

weighted imaging measures of neurite density and fiber pathway fractional anisotropy 

as they relate to ADHD. Teacher ratings of EF were the most robust predictor of ADHD 

diagnostic category while teacher ratings of ER were more critical for predicting 

comorbid ODD. When considering the additional benefit of neurobiological measures for 

predicting ADHD symptomology above and beyond the target teacher rating measures 

of EF and ER, our results implicate the right inferior frontal gyrus (specifically the pars 
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orbitalis) as a region that predicts for both symptoms of inattention and 

hyperactive/impulsive behavior, the left caudate for symptoms of inattention, as well as 

the left pericallosal sulcus, the left inferior frontal gyrus and the left anterior cingulate 

cortex as additional regions associated with hyperactive/impulsive behavior. Interestly, 

our neural measures implicated for predicting ADHD diagnostic category had no further 

incremental validity in predicting comorbid ODD symptoms. 

Below, we further summarize our findings and discuss their clinical and theoretical 

implications.  

Teacher ratings of executive function and emotion regulation 

 In the current study we further examined the neurobiology of ADHD, and also 

determined the extent to which such neural measures may be useful in predicting 

ADHD symptomology and comorbid ODD, above and beyond teacher ratings of EF and 

ER. Consistent with recent work from our group (Oztekin et al., 2021), teacher ratings of 

EF were the most dominant predictor of ADHD diagnostic category, but not comorbid 

ODD. Teacher ratings from the ERC were also a reliable predictor of ADHD diagnostic 

category, although not as high as teacher ratings of EF. In contrast to BRIEF ratings, 

ratings of ERC could reliably predict comorbid ODD. Thus, while our investigation points 

to teacher ratings of EF as the most diagnostic predictor of ADHD diagnostic category, 

teacher ratings of ER stand out as a more critical predictor for comorbid ODD diagnosis 

in this very young age range. Consistent with emerging work suggesting ER as critical 

component of ADHD (Graziano & Garcia, 2016; Shaw et al., 2014), our results suggest 

that early intervention efforts should target children’s ER skills (rather than EF) given its 

relation to both core ADHD symptomlogy and ODD. Targetting ER skills during the 
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preschool period is especially important given the high comorbidity of ADHD and ODD 

during this period (Harvey et al., 2016).   

Neurobiology of ADHD, its symptomology and their incremental benefit beyond teacher 

ratings of EF and ER 

With respect to evaluating the neurobiology of EF and ER for ADHD, our 

analytical approach followed three steps. Initially, machine learning models were run to 

predict ADHD diagnostic category in our sample. Then, the target measures were 

further evaluated to assess whether they show reliable associations with dimensional 

assessments of ADHD symptomology, namely symptoms of inattention and 

hyperactive/impulsive behavior. Third, among the target measures that exhibited 

reliable associations with ADHD in these two steps, we further assessed their relative 

utility in comparison to the teacher ratings of EF and ER. Our overarching goal was to 

identify the critical neurobiology that provided diagnostic utility above and beyond those 

provided by the target teacher ratings alone. We next discuss the key neurobiology that 

were identified in this three-step approach. 

The inferior frontal gyrus was a prominant brain region identified in our current 

investigation. Specifically, microstructure in this region was associated with both 

symptoms of ADHD. Prior cognitive neuroscience research has consistently implicated 

this region as critical for successful and efficient resolution of interference in working 

memory. Numerous neuroimaging studies have noted enhanced neural activation in this 

region in the presence of interference (Badre & Wagner, 2005; D'Esposito et al., 1999; 

Jonides & Nee, 2006; Oztekin & Badre, 2011; Oztekin et al., 2009). The critical role of 

this region in supporting the control mechanisms that resolve interference in working 
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memory has been further established by studies demonstrating that patients with lesion 

in this area are more susceptible to making errors in the face of interference (Feredoes 

et al., 2006; Thompson-Schill et al., 2002), and by repetitive transcranial magnetic 

stimulation evidence indicating that inhibition of this region increases error rates in the 

presence of interference (Feredoes et al., 2006).  

Another relevant and related context that implicates the right inferior frontal 

cortex has been inhibitory control operations identified in Go-No Go paradigms such as 

the Stop Signal Task (Hannah & Aron, 2021). Notably, previous research has identified 

this region as a potential modulatory neural measure for ADHD-related performance 

deficits in this task (Chevrier & Schachar, 2020; Tremblay et al., 2020). Given that 

inhibitory control and working memory deficits are commonly observed in ADHD 

(Hammer et al., 2015; Karalunas et al., 2017; Palladino & Ferrari, 2013; Raiker et al., 

2019; Raiker et al., 2012), it will be important for future research to clarify whether its 

potential role in ADHD is via its modulatory role in controlled working memory 

processes. 

  In addition to the inferior frontal gyrus, our study further implicated the left 

caudate for symptoms of inattention, as well as the left anterior cingulate cortex, and the 

left pericallosal sulcus as critical neural measures for symptoms of 

hyperactive/impulsive behavior. The further implication of these regions of the emotion 

regulation network is consistent with the contention that EF related effects might not 

predominantly emerge in this very young age rage (Halperin & Schulz, 2006), and 

extends prior research that have identified important contributions from subcortical 

volume measures (Hoogman et al., 2020; Rosch et al., 2018). Thus, with respect to 
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behavioral/cognitive and neural measures of theoretical importance for ADHD, our 

findings further stress the importance of conjointly evaluating EF and ER. 

Critical Future Directions 

 With respect to the neurobiology of ADHD, the contributions of individual 

differences in white matter and neuronal microstructure gleaned from diffusion weighted 

imaging have been notably understudied. Studies exploring the feasibility of machine 

learning for classification of ADHD have mostly focused on T1-weighted structural data, 

for instance focusing on cortical thickness measures (Colby et al., 2012; Ghiassian et 

al., 2016; Oztekin et al., 2021; Peng et al., 2013; Qureshi et al., 2017; Sen et al., 2018), 

with the majority of studies focusing on functional MRI, resting-state data (Colby et al., 

2012; Dai et al., 2012; Du et al., 2016; Ghiassian et al., 2016; Qureshi et al., 2016; 

Qureshi et al., 2017; Sen et al., 2018; Sidhu et al., 2012; Wang et al., 2017), functional 

brain volumes (Tan et al., 2017) or task-based functional data (Hart et al., 2014). 

Accordingly, a major criticism has been the issue of transportability (Foster et al., 2014; 

Woo et al., 2017), and that the findings do not have the potential to generalize to or be 

easily applied in clinical settings. Because DWI metrics can be obtained in a short 

anatomical scan, they have better promise for clinical settings. In addition to their 

potential clinical utility, our findings critically implicate their theoretical importance for 

ADHD. Most importantly, our current findings implicate neurite density as an important 

neural measure that could jointly predict ADHD diagnostic category and its 

symptomology. As such, the current set of findings strongly implicate the critical 

importance of pursuing diffusion weighted imaging measures with respect to the 

underlying neurobiology and potential functional impairments associated with ADHD.  
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It is also important to note how the neural measures identified for predicting 

ADHD diagnostic category and the associated symptoms could not further predict 

comorbid ODD. This result is consistent with previous meta-analyses analyses that 

found no association between brain dysfunctions and comorbid conditions in ADHD 

(Cortese et al., 2012; Hart et al., 2012), and previous studies that have observed 

differential neurobiology for ADHD and CC/ODD (reviewed in Rubia, 2011). These 

findings are in line with prior work suggesting that ADHD has a stronger neurobiological 

basis whereas ODD may have stronger ties to environmental/family risk factors (Rowe 

et al., 2002). These results further support early intervention guidelines by the American 

Academy of Pediatrics (Wolraich et al., 2019) that recommend behavioral parent 

training as a first line of treatment for preschoolers with ADHD, especially given the high 

comorbidity rates with ODD. Nevertheless, it will be important to further evaluate these 

neural markers to determine their utility in predicting not only the developmental course 

of ADHD but also children’s response to both medical and psychosocial interventions.  
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Table 1. Incremental benefit among the implicated target measures in predicting ADHD 

symptoms of inattention and hyperactive/impulsive behavior. The table presents 

changes in adjusted-R2 with the addition of 1) teacher ratings of EF and ER, and 2) the 

neurobiology of EF and ER that significantly predicted symptoms in our full model. 

 
 

Model  
Adjusted-R2 

 

 
Demographics 

(Age + child sex) 

 
Demographics  
and Ratings  

 

 
Demographics, Ratings 

and Neurobiology 
 

Inattention .004 .433 .454 
Hyperactive/impulsive .005 .452 .507 
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Figure 1. Illustration of the target neurobiology assessed in our study. 
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Figure 2. Classifier performance for predicting diagnostic category. Error bars indicate 

standard error of the mean classifier performance achieved across the five iterations 

employed. 
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Figure 3. Selected regions of EF and ER for cortical and subcortical volume. Classifier 

coefficients indicate feature importance rankings of the selected regions for predicting 

diagnostic category. 
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Figure 4. Selected regions of EF and ER for NDI metrics. Classifier coefficients indicate 

feature importance rankings of the selected regions for predicting diagnostic category. 
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Figure 5. Selected regions of EF and ER for ODI metrics. Classifier coefficients indicate 

feature importance rankings of the selected regions for predicting diagnostic category. 
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Supplementary Table 1. Performance metrics for predicting ADHD diagnostic category 

for whole brain measures. 

 

Models Volume Area CT Curvature NDI ODI 

Accuracy .844 
 

.683 
 

.683 
 

.683 
 

.739 
 

.794 
 

Permutation 
p value .001 .001 .001 .001 .001 .001 

F1 .837 .667 .654 .633 .720 .773 
 
Note. CT = Cortical thickness; NDI = Neurite Density Index; ODI = Orientation 
Dispersion Index 
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