
CmpE 492 Project

New Approaches in Quantization

and Dithering

Bilgehan Uygar ÖZTEKIN

Supervised by

Lale AKARUN

Bogazici University

Computer Engineering Department

Fall 1997

Graduation Project, Different Approaches in Quantization and Dithering

 2

Table of Contents

Abstract ___ 3

Introduction __ 4

Quantization and Dithering ___________________________________ 7

Implementation Details ______________________________________ 11

Building the Histogram___ 13

Quantization Methods__ 15

First K Modes ... 17

K-Means ... 17

Recursive Splitting .. 19

Particle Simulation .. 20

Valley Descending and Simulated Annealing.................................... 23

Palette Color Assignment Methods _______________________________ 25

Nearest Neighbor .. 25

Error Diffusion.. 26

Probabilistic Assignment ... 26

Conclusions ___ 34

Future Works__ 52

Glossary __ 53

References __ 54

Appendix ___ 55

Abstract

Quantization is the process of reducing the color depth of an image, it

usually requires a selection of a representative palette. Dithering is the process of

using the palette as good as possible so as to represent the image with minimum

loss. Most of the quantization techniques are deterministic and does not consider

the averaging property of the eye. In this project we will try to:

• implement existing quantization methods and compare their performance

on relatively large images having thousands of different colors.

• develop a new method, a probabilistic assignment of palette colors as an

alternative to post dithering.

• develop a new method which will emphasise on selecting distant

representative colors for the palette during quantization so as to obtain

better results after dithering.

We will also try to optimize the code to increase scalability: Large and

more colored images should also be processed in reasonable amounts of time.

Keywords

Vector quantization, dithering, error diffusion, probabilistic color

assignment, clustering, histogram.

Graduation Project, Different Approaches in Quantization and Dithering

 4

Introduction

Due to practical considerations and limitations of display devices, reducing

the color depth (number of colors) of images become more and more common

place with the growth of graphical user interfaces and graphics based programs.

This need arises mainly due to the limited hardware capabilities, or speed

requirements of certain applications. With increasing usage of graphical user

interfaces, optimisations of these methods become more and more important.

Today’s understanding of human vision suggests that most of the colors

that can be seen by the eye can be constructed by superposing different amounts of

three “primary colors” red, green, and blue, ie. we can fool the eye that it is seeing

naturally occurring colors by simulating them using red, green and blue lights. A

generally accepted theory suggests that the human eye has three different kinds of

color receptors, the cones. (There is also a different type of receptors, “rods”

sensible to intensity). Each color receptor is sensible to a range of frequencies, and

the three different kinds of receptors are dominantly sensible to the frequencies

corresponding to around red, green, and blue wavelengths respectively. For

example a color of wavelength around red light stimulates mostly the red cones,

then in a small amount the green cones and maybe slightly the blue cones. Human

eye somehow uses the different amount of stimuli occurring at the three cone types

and maybe other information to see “colors” . Most of the “naturally occurring

colors” can be simulated by adjusting the amounts of red, green, blue lights and

superposing them on each other. Today, most of the raster scan displays and

television systems use this technique to produce colors. Although some naturally

occurring colors outside the “color gamut” (see ref. [1], ref. [5]) of the display

system cannot be simulated, the method works well for human beings though it

may not work for different perception systems.

Graduation Project, Different Approaches in Quantization and Dithering

 5

More information about human vision, and color systems can be found in

“Computer Graphics” by Donald Hearn and M. Pauline Baker (ref [1]).

Nowadays most of the display adaptors found in both personal computers

and workstations are RGB (red, green, blue) system based, and there are two

different approaches to color modes:

1) Paletted approach: up to n colors can coexist (usually n is 16, or 256),

where each color can be selected from a palette of a larger color

space.(usually 4, 6, or 8 bits per RGB components). There is a mapping

table between color numbers and the colors represented; only the color

number is stored in the frame buffer.

2) True color approach: the RGB components of each pixel is written to

the frame buffer. In this approach the number of different colors that can

be used is only limited by the image size and the size of color space. All

of the red, green, and blue components have associated bits in the

corresponding buffer for each pixel. Here are some of the commonly

used pixel packing formats in true color modes:

• 15 bits: 5 bits red, 5 bits green, 5 bits blue, 1 bit alpha. (*)

• 16 bits: 5 bits red, 6 bits green, 5 bits blue.

• 24 bits: 8 bits red, 8 bits green, 8 bits blue.

• 32 bits: 8 bits red, 8 bits green, 8 bits blue, 8 bits alpha.

(*) this mode is in practice mentioned as 15 bits mode in order to

differentiate it between 16 bits mode although its fields sum up to 16 bits.

For Intel™ x86 and higher series, VESA® standards [2] does not restrict

the size of the fields but most of the hardware manufacturers only implement a

subset of these modes for different resolutions.

Although true color modes result in better color depths and ease of

programming due to direct color manipulation, they are relatively slower and have

Graduation Project, Different Approaches in Quantization and Dithering

 6

higher storage requirements than the paletted color modes. Thus most recent

graphical user interfaces use 256 color paletted mode in order to speed up the

graphics operations. Moreover limited frame buffer size limits the color depth in

higher resolutions considerably. Those and similar practical considerations result in

the need for optimised color depth reduction algorithms.

Two different approaches in color reduction must be considered:

1) The reduction will be made once and then the resultant image will be

used instead of the original image. In this case of course what we want is

the best image that we can have in a reasonable amount of time. Some

examples can be: storing a scanned image in a database by reducing the

color depth but “not loosing too much” of the original image, preparing

images or movies to be distributed, printing a final version of a

document containing graphics.

2) The reduction must be made on the fly so that the original image can be

displayed with the limitations of the current hardware and software. For

example an image of a large color depth can be stored; each machine can

display it according to its limitations or time requirements of the

application. Previewing a large amount of images in a limited amount of

time, or preparing thumbnails also requires fast reduction algorithms.

The first case requires finer algorithms although they may require more

computation power, whereas in the second case what we want is acceptable results

in a minimum amount of time and computation.

Graduation Project, Different Approaches in Quantization and Dithering

 7

Quantization and Dithering

In the context of this document, quantization is the process of reducing the

color depth of an image. It can be applied to either reducing a true color image to a

true color image of lesser color depth which is quite straightforward and done by

mapping the red green and blue parts of each pixel pack to the corresponding

target pixel pack format. A more difficult problem occurs when a true color image

(or an image of a greater palette size) has to be mapped to a limited paletted format

in which the selection of the colors in the palette greatly influences the results

obtained. The problem can be formalised as finding the k representative colors that

will be used to reduce the number of colors, n of the original image so that the

original image will be preserved as much as possible.

Dithering is the process of using the palette as good as possible to represent

the original image with minimum error. All dithering methods are based on the fact

that the human eye tends to average the colors and intensities of neighbouring

points if the points are not too distant. Most printing and displaying devices use

this technique to increase the number of colors or color levels by using extra

resolution. For example most laser printers do not have grey levels; they only have

white and black as building blocks, but since the resolution of the devices is big

enough (typically 300 to 1200 dots per inch) by cleverly placing the black and

white, illusion of high number of grey levels is achieved.

Error diffusion is one of the finest dithering methods which is extensively

used in most graphical packages. It is based on the principle of distributing the

error made in the quantization of the current pixel to the neighbouring, not yet

processed pixels hoping that during the quantization of the modified neighbouring

pixels, the error introduced in the first quantization will be balanced or reduced by

the averaging property of the eye. We can say that in the error diffusion method, at

the quantization stage of each pixel, we try to balance the quantization errors done

Graduation Project, Different Approaches in Quantization and Dithering

 8

in previous pixels. Error diffusion does not have the anomalies such as repeating

patterns, artificial edges that occur in using fixed, look-up based dithering methods

such as halftoning and ordered dither where each pixel of the original image is

mapped to a box or rectangle of bigger resolution of predetermined pattern (see

ref. [1] and ref. [5] for more information about dithering and commonly used

dithering methods).

In this project we used the error diffusion method developed by Floyd and

Steinberg in which the difference between the exact color vector and the

approximated color vector is added to the values of the four neighbors of the pixel

as follows: 7/16 of the error to the pixel to the right, 3/16 to the pixel below and

the left, 5/16 to the pixel immediately below, and 1/16 to the pixel below and to the

right. The image is constructed from upper left position to lower right position line

by line and the error encountered on each pixel is diffused to the neighboring not

yet processed pixels as described above. We also developed a probabilistic

assignment of colors in the palette as an alternative to the error diffusion method.

In quantization what we want is minimum quantization error. The error

obviously depends on how much we decrease the color depth and which colors are

selected to build the palette from which we will try to represent all the colors that

occur in the original image. Most of current color quantization methods use RGB

color coordinate system which can be though to be equivalent to Cartesian

coordinate system where x, y, and z axes are replaced by “red”, “green” , and

“blue” axes. Generally the error introduced by using color b instead of color a is

considered to be the square of the “Euclidian” distance between the two points

corresponding to the colors a and b in the RGB coordinate system which is:

(. .) (. .) (. .)a red b red a green b green a blue b blue− + − + −2 2 2 (1)

Total error encountered in the whole quantization process becomes:

Graduation Project, Different Approaches in Quantization and Dithering

 9

((. .) (. .) (. .))a red b red a green b green a blue b bluei i i i i i
i

n

− + − + −
=
∑ 2 2 2

1

 (2)

where n is the total number of pixels in the image, ai is the color vector of

the ith pixel of the original image and bi is the corresponding color vector in the

generated image. Since the error function defined as above is differentiable,

methods using the gradient vector such as gradient decent and artificial neural

networks can be applied. Some of the methods can be found in “Artificial

Intelligence” [3] by Rich and Knight. We used this error function to accept or

reject an operator in valley descending and simulated annealing, and also to

measure the quality of the solution obtained for each method quantitatively.

Even if optimal methods are suggested and implemented to minimise the

quantization error for the above error definition, the results obtained from the

quantization are not satisfactory if no further processing is applied. The main

reason for that is smooth transitions in the original image are lost due to

quantization (clusters of same colors occur), and contours occur at the boundaries

where a slight change in the original image result in sensible changes in the

resultant image.

The image obtained can be improved drastically by applying dithering

methods which use the averaging property of the eye to reduce the error perceived

even if, in some cases, the error measured in the above error definition is enlarged.

Applying a quantization method and then applying a variant of error diffusion is the

most common color depth reduction method used nowadays.

Using a stochastic method in choosing which representative color to use for

a given pixel may also help in avoiding the artificial edges and contouring effects.

We developed a probabilistic palette assignment method to explore this possibility

which shall be described later on.

Graduation Project, Different Approaches in Quantization and Dithering

 10

Dithering methods use the averaging property of the eye, and the range of

the colors that can be represented using dithering is improved if the colors are

distant from each other. This can be visualised easily with an example. Let us

suppose that we have two colors: white and black, and we want to generate a

number of grey levels. We can use neighbouring pixels of different proportions of

white and black pixels to generate grey levels, the more there are black pixels, the

darker the grey level etc. Obviously we cannot obtain colors darker than the given

black or lighter than the given white using this method. Traditional quantization

methods do not take into account that dithering methods work better if the

representative colors chosen are at the edges of the corresponding “color clusters”

so that the ranges of colors obtainable using dithering is increased. In fact if we

have very fine resolutions by using just three colors: red, green and blue we can

construct all of the colors that can be obtained in the triangle shaped region drawn

between these three colors in the CIE color coordinate system. This method is used

in CRTs and television sets.

Graduation Project, Different Approaches in Quantization and Dithering

 11

Implementation Details

The image format that we selected is Truevision’s 24 bits uncompressed

Targa format which is a truecolor format where each red, green, and blue

components are assigned 8 bits allowing the storage of any of the pixel pack

formats proposed by Vesa® without loss if the alpha bits are not used for special

purposes. This is a widely recognized format and it is fairly easy to convert any

type of image to this format using graphics packages such as Paint Shop Pro,

Photo Shop, Corell Draw etc. Although paletted images are grown in size due to

conversion, and the information about possible number of different colors is lost,

we can reconstruct the histogram in a couple of seconds thanks to the optimized

histogram building algorithm that we optimized.

The Targa format has a header of 18 bytes which includes the x and y sizes

of the image and some parameters differentiating this format from other Targa

formats. Each x and y size are assigned 2 bytes allowing up to 65536 by 65536

images.

We developed two template classes: Set, and Vector in order to obtain a

better, flexible, and reliable code. Set is a doubly linked list of a generic element

type. It has a couple of different constructors, many methods allowing easy

traversing in both directions, methods to detect errors, seek an element, overloaded

equalization operator, copy constructor, destructor etc. Any function can accept

as both value and reference parameter set and return a set as a function return

value (these operations require a copy constructor). Moreover any set can be made

equal to another set which requires many operations that must be done transparent

to the user of the class: first the destructor is called deallocating the memory

assigned for all nodes in the first set, then memory is allocated for a new node

corresponding to each node in the second set and elements are copied by calling

the equalization operator of the element which can also be sets or any other

Graduation Project, Different Approaches in Quantization and Dithering

 12

classes. For example you can have sets of integers, sets of doubles, sets of vectors,

sets of sets of integers, sets of sets of sets of vectors etc. Thanks to object oriented

features you can use sets very efficiently without fear of bugs once you are sure

that the template class is bug free. The Set class requires that its elements have a

default constructor and a “=” (equalization) operator to exist. The seek method

requires that “==” (equality checking) operator to be overloaded. We also

overloaded the “<<” operator of output streams for the set class so that we can

print sets just like other types.

This code fragment shows how practical and powerful to use the set class:

#include <iostream.h>

#include “Set.h”

typedef Set<int,int> IntSet; // define set of ints using ints as indices.

IntSet set1(3,1,2,3); // set1={1,2,3}

IntSet set2=set1; // set2={1,2,3} (copy of set1)

typedef Set<IntSet,int> SetofIntSet // define set of integer sets

SetofIntSet SET(1,set2); // it has one element: a copy of set2

void main(void)

{

 int temp;

 set1.GetFirst();set1.GetNext(); // go to second element

 set1.SetAt(5); // set1={1,5,3}

 SET.Add(set1); // SET={{1,2,3},{1,5,3}}

 cout << SET << ‘\n’;

 for(set1.GetFirst();!set1.Failure();set1.GetNext)

 cout << set1.GetAt() <<’,‘;

}

And here is the output of the code:

{ { 1, 2, 3 }, { 1, 5, 3 } }

1,5,3,

Graduation Project, Different Approaches in Quantization and Dithering

 13

The vector class is similar in nature, it allows pass by value, pass by

reference, has default constructor, a destructor and many operators overloaded

allowing vector addition, subtraction, dot product, product by a double, Euclidian

distance, norm and many methods such as normalize, getdim, get, set, fill etc.

Moreover the dimension of the vector can be changed after it is declared. (In fact

the default constructor constructs a vector of zero dimension, then you can freely

change the dimension by assigning another vector using equalization operator, or

by calling another constructor which allow direct initialization with parameters).

The output stream’s “<<” operation is also overloaded to print vectors. For

example if “s” is a set of vectors having elements two vectors: (1,2) and (5,3) the

statement “cout << s;” results in the output { (1,2), (5,3) } .

There are many assertions in the definitions of both of the classes which

allows early detection of bugs such as trying to go to the next element when we are

already at the end or trying to get an element when the set is empty etc. Note that

these assertions are included to the code only in debug versions, in the final version

they are ignored and thus do not reduce performance.

For more information about these class templates see the appendix where

all of the codes with detailed comments are given or examine the files Set.h and

Vector.h

Building the Histogram

Most of the quantization methods use the histogram of the image. Some of

them just use the pixels in the original image but by using the histogram instead of

the image itself drastically improves performance. In some algorithms we just use

the different colors and in some others we also use the number of occurrences of

each color. It is fairly easy to construct the histogram of a paletted image where

standard palette sizes are 16 and 256. For a palette image of 256 colors, it is priori

known that at most 256 different colors can coexist in the image. We can keep an

Graduation Project, Different Approaches in Quantization and Dithering

 14

array of size 256 where each element is set to 0 initially, and for each pixel that we

process we can increment the color counter in the corresponding array element.

This method requires only one pass of the image thus has the time complexity O(s)

where s is the number of pixels in the image which is (x size) * (y size).

Unfortunately we cannot use this method for truecolor images where the

number of possible different colors is only limited of the smallest of these two:

• the number of pixels in the image

• the number of different colors that can be constructed using the current

truecolor mode.

For example for a 24 bits truecolor 640 by 480 image, number of different

colors that can be obtained is 256x256x256 which is 16,777,216 and number of

pixels in the image is 640x480 which is 307,200.

The obvious solution is to initialize a set of histogram nodes containing the

color and a counter (which counts the occurrence of the color) to an empty set and

for each pixel in the image, check if its color is already in the histogram; if it is we

increment the corresponding counter; otherwise we add a new node to the

histogram set containing the color of the pixel with associated counter set to one.

The performance of the algorithm depends heavily on the time complexity of

finding the color in the histogram if it exists, or determining that it does not exists

if this is a new color.

A hashing algorithm is developed in order to speed up the process. Each

color is mapped to 766 different sets according to the sum of its red, green, and

blue components. And this sets are than linearly searched for occurrence of current

color. In the best case the algorithm works in time complexity O(s), if all the sets

contains at most 1 element, and O(s*s), if all colors are hashed to a single set

where s is the total number of pixels in the image.

Graduation Project, Different Approaches in Quantization and Dithering

 15

Application of the hashing method greatly improved the performance of

building the histogram : as an example the program can construct the histogram of

an 579 by 824 (477,096 pixels) image having 91,944 different colors in less than 10

seconds on 150Mhz Cyrix 6x86 which is comparable to existing commercial

packages. Note that the method works very fine for images having a few thousands

of different colors due to the relatively small number of hashing sets.

An alternative approach which may give better results in the case of large

numbers of different colors can be the usage of balanced trees which will result in

time complexity of O(s*log(s)). Note that using a large number of hashing sets and

a good hashing function we can effectively approach complexities of O(s).

Quantization Methods

The program developed have six different quantization methods and three

different palette assignment methods implemented. Thus for each sample of

quantization methods three different images are constructed and saved to files. The

parameters are passed from the command line. Here is the help screen which is

displayed if the number of parameters passed is not sufficient:

Usage: Quantize source.tga colors samples [methods]

Source is the picture in uncompressed 24 bit targa format.

Colors is the number of colors in the destination image.

Samples is the number of samples taken for each method.

Methods is optional and must be a list of method numbers.

These methods are implemented:

 1:First K Modes

 2:K-Means

 3:Recursive Splitting

 4:Particle Simulation

 5:Valley Descending

Graduation Project, Different Approaches in Quantization and Dithering

 16

 6:Simulated Annealing

Each sample of the methods will result in three images:

 1:Nearest Neighbor assigned (no dithering)

 2:Floyd-Steinberg, error diffused

 3:Probabilistic assignment

The command:

quantize picture.tga 32 20 2 3 5

applies the methods 2, 3, and 5 on the image “picture.tga”, where 20

samples are taken for each method and the number of colors in the resultant images

is set to be 32. The program will time each sample, store the error defined in

equation (2) for each sample and obtain mean time and its standard deviation, mean

error and its standard deviation for each method. Some of the methods starts with

random initial values, whereas some of the methods uses random numbers in the

algorithm allowing each run to result in different images. The standard deviation in

both time and quality is important. Note that If only one sample is taken, standard

deviation calculations are bypassed in order to avoid division by zero.

The quantization methods that we called recursive splitting and particle

simulation are developed throughout this project. The probabilistic palette

assignment method is also developed by the author. Although similar methods

could exist we are unaware of such methods and developed the three methods

independently. Before explaining each quantization and color assignment methods

in detail let us give some common assumptions:

• N is the number of colors in the original image, K is the desired number

of colors in resultant images.

Graduation Project, Different Approaches in Quantization and Dithering

 17

• The histogram is obtained and placed in the set H having entries for each

color occurring in the image along a counter of occurrence for each

color.

• P will be the palette, the set of colors that will be in the resultant image.

Note that P will also be a set of histogram nodes thus will also have a

count field which is used in some algorithms.

First K Modes

This is a very simple and fast method. It just finds the most occurring K

colors in the histogram and sets the palette to these K colors. Here is the

algorithm:

Add to P the first K histogram nodes in H

for(each color in the histogram from K+1 to N) {

 find c = color having the minimum count value in P,

 if H.current_color.count is larger than c.count

 replace c with H.current_color in P;

}

K-Means

This is a hard decision version of k-means clustering algorithm. We start

with a precalculated or randomly selected palette of K entries. The principle is to

assign each pixel in the original image to the nearest color in the palette in terms of

a distance measure which is in general Euclidian distance in RGB coordinate

system; thus we obtain clusters for each color in the palette. The new value of each

color in the palette is calculated by averaging the colors of each pixel in the cluster

corresponding to the palette color. We do not use the whole image but the

Graduation Project, Different Approaches in Quantization and Dithering

 18

histogram in order to speed up the process by using the count values kept for each

color in the histogram. Here is the final algorithm:

Initialize P to contain K histogram nodes.

For each K nodes in P allocate space for four counters: avr, avg, avb,

and count

1: reset all counters to zero

For(each node in H){

find the nearest color in P in terms of Euclidian distance to the

current color in H.

update the counters of corresponding color in P as follows:

avr=avr+H.current_color.red*H.current_color.count

avg=avg+H.current_color.green*H.current_color.count

avb=avb+H.current_color.blue*H.current_color.count

count=count+H.current_color.count

}

calculate the new coordinates of each color in P using the counters

if any of the palette colors is changed go to 1.

Note that by using just the histogram instead of the image itself, we did not

changed the result (except some possible round-off errors) since we weight each

color in the histogram with its occurrence counter.

Graduation Project, Different Approaches in Quantization and Dithering

 19

Recursive Splitting

In this method we start with a single large set containing the colors in the

histogram. At each iteration we select the largest set (the set having largest

cardinality) and split it into two sets until we have K different sets. The splitting

process consists of finding the component among red, green, and blue components

having the largest spread (having largest max-min value), we find the average in

the selected components and remove from current set all entries having selected

component greater than the average and, put them to a new set. When we have K

sets we calculate the average color in each set and add an entry to the palette

having the average color calculated. Here is the algorithm:

let number of sets be 1

let P be empty initially

let the first set contain all colors in the histogram, and all other K-1 sets

be empty.

While number of sets is less then K do {

 find the largest set among current sets,

 find the component having the largest spread

 find the average according to the selected component

remove all entries having component greater than the average

and put them to a new set.

}

Calculate the average color in each set and add a corresponding entry in

P.

Graduation Project, Different Approaches in Quantization and Dithering

 20

Particle Simulation

In quantization we want minimum quantization error and in dithering we

want relatively distant colors so as to be able to approximate large amounts of

intermediate colors by using combinations of the distant colors. Most quantization

techniques does not consider post dithering thus only tries to minimize the

quantization error. By using the averaging property of the eye, we can obtain better

looking images if we try to minimize the quantization error while at the same time

trying to select distant colors although the error measured in (2) may become

larger.

We tried to develop an algorithm which we thought may achieve these

goals.

The pixels in the histogram will be represented by points or “particles”

located according to their color in RGB color space. We shall call these points

stationary points which will not be moved during the iterations having a mass

proportional to the number of occurrence of the color.

Let us assume that there will be n stationary points each having a

corresponding weight wi and we want to approximate the image using k different

colors.

k new free points will be added to the system which will be free to move at

each iteration. The initial location of the points may be chosen from the most

frequent colors in the histogram or chosen randomly. Each free points will have a

mass of N/K/alpha where N is the total number of colors in the original image and

K is the number of colors to which we intend to reduce the image. Alpha is a

parameter of the system, which is around 10 in current implementation.

Each free point will be attracted by the stationary points according to the

weights of the stationary points and will be repelled by other free points. The

Graduation Project, Different Approaches in Quantization and Dithering

 21

direction and magnitude of the “net force” on each free point will be calculated and

the point will be moved according to the calculated values. Attraction and

repulsion will be inversely proportional to a function of the distance d between the

points, and directly proportional to the weights of the points. This functions is

selected to be f(d)=d 2 analogous to Universal Gravitation although other functions

can also be selected.

Weights associated to the free points is very important in obtaining good

results since too much weight may result in divergence and too little weight may

not satisfy the requirement of distant representative colors.

The process will stop when a predetermined number of iterations is

reached. Let us now give the algorithm:

“Cluster points” are the free points, and “ordinary points” are the static

ones. Coordinates of ordinary points are of discrete type (0..255) where

as the coordinates of cluster points are of floating point type.

maxdelta=10, mindelta=1, deltadec=0.3

cluster_point_multiplicator=0.01 // these values can be changed

ordinary_point_multiplicator=0.01 // to obtain different results

alpha=10

cluster_point_mass=N/K/alpha

ordinary_point_mass=1

randomly initialize the location of cluster_points

ordinary_points have locations corresponding to the color they represent.

delta=maxdelta

while(delta>mindelta) {

Graduation Project, Different Approaches in Quantization and Dithering

 22

for each cluster point calculate the netforce1 due to ordinary

points

where the contribution of each ordinary point is: (let p be the

current ordinary point)

(cluster_mass*point_mass*p.count/square(Euclidian_distance)) *

unit direction

for each cluster point calculate the netforce2 due to other cluster

points where the contribution of each cluster point is:

(cluster_mass*cluster_mass/square(Euclidian_distance)) * unit

direction * (-1)

for each cluster point let

netforce = (cluster_point_multiplicator*netforce2 +

ordinary_point_multiplicator*netforce1)

Normalize the netforce and multiply it with delta. (so as to avoid

big jumps in coordinates)

Move each cluster_point in the direction and amount suggested

by the corresponding netforce.

If any coordinate of the cluster_points is less than 0.0 set these

coordinates to 0.0

If any coordinate of the cluster_points is larger than 255.0 set

these coordinates to 255.0

delta=delta-deltadec // delta must be decreased in some way.

}

Note that some optimizations can be done such as not to multiplying with

cluster_mass in the calculation of both netforces, but we left it there to emphasize

Graduation Project, Different Approaches in Quantization and Dithering

 23

the analogy to Gravitation. This algorithm is very new and most of the parameters

can be optimized to obtain better results. The attraction and repulsion formulas can

be changed; in fact we tried dependence on other powers of distance for one or

both of the forces. The alpha constant is very crucial to obtain equilibrium: if the

repulsion are given too much weight the points diverge, if no weight is given the

nearby initial points tends to converge to the same or very near positions which

effectively reduce the number of available colors. Once the algorithm is finalized

optimizations can be started. We obtained satisfactory results in relatively small

amounts of times (about 50 seconds) for small images (such as 256 by 256 images

having about 200-250 different colors). The method can be improved to give better

results for better time complexities.

Valley Descending and Simulated Annealing

The simulated annealing is a slightly modified version of the Valley

Descending algorithm. Both of them uses the error function defined in (2). They

turned out to be impractical for large images since the calculation of the error

function is too costly if the number of colors in the original image is high. Most of

the time is spent in the calculation of the error. Apparently the error function has

time complexity O(N*K) and requires many floating point operations. Unlike the

particle simulation method the number of iterations is not bounded, the process

continues until a local minimum is found. Thus by increasing the number of colors

in the original image we both increase the time required to calculate the error and

increase the number of iterations needed to hit a local minimum.

We start with K entries in the palette either preselected or chosen

randomly. We tried to select the operators so that minimum change will occur by

applying an operator. The operators are defined as increasing or decreasing the red,

green or blue component of a color in the palette by 1 which makes 6 possible

operators for each color in the palette. Since we have K colors in the palette we

have at most 6*K different operators to choose from at each iteration (note that if

Graduation Project, Different Approaches in Quantization and Dithering

 24

some components of the colors are at the boundaries (0 or 255) the number of

possible operators are decreased.) Since the error function is costly we mark all the

tried and rejected operators and chose a new operator randomly among the

remaining operators until an operator is accepted or all the operators are marked as

tested in which case a local minimum is found. An operator is accepted if applying

it, results in smaller error in the case of valley descending, and if exp((initial error-

final error)/temperature) is larger than a selected random number in the case of

simulated annealing. This function results in acceptance of all of the operators

resulting in better states and some of the operators resulting in worse states. If

temperature is high, acceptance probability of any operator is high, and when

temperature is low, only small amounts of operators resulting in worse states are

accepted. We start with a high temperature and at each iteration we decrease the

temperature, thus “cool the system”. At the beginning simulated annealing process

works more or less randomly and at the end of the process, when it is cooled

enough it becomes more or less like valley descending since only good moves are

accepted most of the time. The simulated annealing has a chance to avoid local

minimums by the randomness effect in the beginning of the process.

In the case of simulated annealing the stopping criteria is:

• temperature should be less than a predetermined threshold,

• a local minimum should be detected,

• the best_so_far state (that we update each time a new state is better than

best_so_far) should not be better than current state.

If best_so_far is better than the local minimum state, we go back to

best_so_far state and start a new iteration. Note that at the beginning of each

iteration all of the possible operators are unmarked.

Graduation Project, Different Approaches in Quantization and Dithering

 25

A rule of thumb that is generally applied in simulated annealing states that

the initial temperature should be selected so that about half of the initial operators

should be accepted, but in the case of this project selecting such a number is

impossible due to wide variety of images that are possible requiring selection of

temperatures for each type of image specifically. Maybe a function of N and K can

be found which will work for most of the images but it is not easy to find and

express this function.

Since valley descending has also a randomness in that with different initial

seeds it can converge to different local minimums, applying simulated annealing

thus increasing the time needed to converge considerably is not compensated by

the slight improvements in the quality of the solution.

Note that we can improve the results obtained by allowing larger changes

to be accepted by redefining the operators: allowing more than one components to

be changed at a time or increasing or decreasing a component by a value larger

than one. Note that these approaches may decrease the probability of being stuck in

local minimums but in this case marking rejected operators becomes impractical

due to large numbers of operators that are possible.

Palette Color Assignment Methods

Nearest Neighbor

In this method for each pixel in the original image, we find the nearest pixel

in the palette in terms of Euclidian distance. Each pixel is mapped to a single color

in the palette. This is the simplest palette color assignment method which results in

loss of smooth transitions and adds artificial edges and contouring effects to the

resultant image. Thus generally after the quantization process, a dithering method

is applied such as the Floyd-Steinberg error diffusion method while building the

resultant image.

Graduation Project, Different Approaches in Quantization and Dithering

 26

Error Diffusion

In this project we used the Floyd-Steinberg error diffusion method for

dithering as an example of classical methods. The method is described in detail in

Quantization and Dithering section of this document.

Probabilistic Assignment

The probabilistic assignment method is developed during this project and is

proposed as an alternative to other diffusion algorithms such as the error diffusion

method used in the program. This algorithm also tends to preserve smooth

transitions in the original image.

The method is based on assigning for each pixel, a color from the palette

stochastically. Once we have a pixel to approximate we calculate a probability of

being able to represent the color in the resultant image for each color in the palette.

We used a function of the Euclidian distance between the color to be approximated

and the colors in the palette in order to assign the probabilities. It is natural to

assign low probabilities to distant colors and high probabilities to near ones. The

selection of the function is very crucial in obtaining good results. If the function

gives equal or comparable weights to both near and distant colors we end up with

an image looking as if a large random noise were applied on it. If nearby pixels gets

too much weight the image looks much like the image obtained from nearest

neighbor assigned image. Thus the selection of the function is very important.

We selected a sigmoid like function which is: f(x)=1/(1+exp((x-3)*mul))

where mul is a parameter that we found out that values around 0.001 gives very

satisfactory results for every image that we tried.

Let us give examples of three palette assignment methods:

The image is a 256 by 256 image having 230 different colors. I selected this

gray level image which become a standard demonstration image in computer

Graduation Project, Different Approaches in Quantization and Dithering

 27

graphics society since this is a relatively small image and all of the methods can be

applied in reasonable amounts of time. The number of colors is reduced to 16 for

all of the methods.

Graduation Project, Different Approaches in Quantization and Dithering

 28

Quantization method: First K-modes

Original image Nearest neighbor assignment

Error diffusion Probabilistic color assignment

Graduation Project, Different Approaches in Quantization and Dithering

 29

Quantization method: K-means

Original image Nearest neighbor assignment

Error diffusion Probabilistic color assignment

Graduation Project, Different Approaches in Quantization and Dithering

 30

Quantization method: Recursive splitting

Original image Nearest neighbor assignment

Error diffusion Probabilistic color assignment

Graduation Project, Different Approaches in Quantization and Dithering

 31

Quantization method: Particle simulation

Original image Nearest neighbor assignment

Error diffusion Probabilistic color assignment

Graduation Project, Different Approaches in Quantization and Dithering

 32

Quantization method: Valley descending

Original image Nearest neighbor assignment

Error diffusion Probabilistic color assignment

Graduation Project, Different Approaches in Quantization and Dithering

 33

Quantization method: Simulated annealing

Original image Nearest neighbor assignment

Error diffusion Probabilistic color assignment

Graduation Project, Different Approaches in Quantization and Dithering

 34

Conclusions

For small images having relatively small number of colors all of the

methods can find a solution in a reasonable amount of time. But for large, truecolor

images the winner in both performance and quality is the recursive splitting method

that we developed, whereas the k-means clustering method was the second best.

The recursive splitting method is the fastest method among the

implemented methods if we exclude the first k-modes method which is only used to

initialize the palette of some other algorithms such as valley descending, k-means

etc. It also resulted in similar quality images as k-means method. Note that the

recursive splitting is deterministic while k-means algorithm depends on initial

conditions although the quality of the image were acceptable for all of the different

initial conditions that are tried.

The valley descending and simulated annealing methods turned out to be

inadequate for color quantization as they require large amounts of time and the

variance in quality is high compared to other methods if we exclude particle

simulation. Sometimes good results are obtained and sometimes they are stuck to a

local minimum having a large error.

The following data is directly taken from the output of the program which

is run for the image Lena.tga for 16 different colors and for 10 samples of each

method. The image is 256 by 256 and has 230 different colors. The command used

to run the program was: quantize lena.tga 16 10

Graduation Project, Different Approaches in Quantization and Dithering

 35

S U M M A R Y

Number of samples taken for each method:10

First K Modes
 Mean time needed : 1.03125 ms Standard deviation : 0.37702 ms
 Mean error : 1.48403e+006 Standard deviation : 0

K-Means
 Mean time needed : 141 ms Standard deviation : 37.2529 ms
 Mean error : 764189 Standard deviation : 65551.5

Recursive Splitting
 Mean time needed : 13.75 ms Standard deviation : 1.31762 ms
 Mean error : 403873 Standard deviation : 0

Particle Simulation
 Mean time needed : 48940 ms Standard deviation : 26655.2 ms
 Mean error : 1.36301e+006 Standard deviation : 582263

Valley Descending
 Mean time needed : 30446 ms Standard deviation : 12706.6 ms
 Mean error : 903544 Standard deviation : 168933

Simulated Annealing
 Mean time needed : 64273 ms Standard deviation : 20283.8 ms
 Mean error : 707238 Standard deviation : 99778.6

Note that the standard deviation of the error in recursive splitting is zero

since the method is deterministic.

We conclude from the data that simulated annealing resulted in better

images in terms of quantization error than the valley descending method but its

time requirement was more than twice. We can associate this fact to the better

behavior of simulated annealing in local minimums especially if the temperature is

high.

As can be seen particle simulation resulted in large errors compared to

other methods but for the case of Lena it took less time than simulated annealing.

Maybe better results can be obtained by adjusting the parameters of the system in

the future.

Let us now compare the performance of recursive splitting algorithm and k-

means clustering for large true color images (we don’t even bother running other

methods, since they are too slow). We will try three different images: Peppers.tga,

Boots.tga and Hajime56.tga.

Graduation Project, Different Approaches in Quantization and Dithering

 36

Peppers.tga, 86786 colors are reduced to 32 colors:

S U M M A R Y

Number of samples taken for each method:1

K-Means

 Mean time needed : 414030 ms Standard deviation : 0 ms

 Mean error : 3.8157e+006 Standard deviation : 0

Recursive Splitting

 Mean time needed : 54430 ms Standard deviation : 0 ms

 Mean error : 4.4386e+006 Standard deviation : 0

Here are the images obtained:

Original image

Graduation Project, Different Approaches in Quantization and Dithering

 37

K-means, nearest neighbor assigned.

Graduation Project, Different Approaches in Quantization and Dithering

 38

K-means, error diffusion.

Graduation Project, Different Approaches in Quantization and Dithering

 39

K-means, probabilistic assignment.

Graduation Project, Different Approaches in Quantization and Dithering

 40

Recursive splitting, nearest neighbor assignment.

Graduation Project, Different Approaches in Quantization and Dithering

 41

Recursive splitting, error diffusion.

Graduation Project, Different Approaches in Quantization and Dithering

 42

Recursive splitting, probabilistic assignment.

Graduation Project, Different Approaches in Quantization and Dithering

 43

Boots.tga, 86,786 colors are reduced to 32 colors:

S U M M A R Y

Number of samples taken for each method:1

K-Means

 Mean time needed : 354660 ms Standard deviation : 0 ms

 Mean error : 4.10924e+006 Standard deviation : 0

Recursive Splitting

 Mean time needed : 73610 ms Standard deviation : 0 ms

 Mean error : 4.91863e+006 Standard deviation : 0

Original image.

Graduation Project, Different Approaches in Quantization and Dithering

 44

K-means, error diffusion.

Graduation Project, Different Approaches in Quantization and Dithering

 45

K-means, probabilistic.

Graduation Project, Different Approaches in Quantization and Dithering

 46

Recursive splitting, error diffusion.

Graduation Project, Different Approaches in Quantization and Dithering

 47

Recursive splitting, probabilistic.

The probabilistic color assignment method also resulted in images

comparable to other dithering methods in quality, it suppresses contouring effects

and resulted in images that look like the original image on top of which a small

amount of random noise is added. It can be used as an alternative to the current

dithering methods if such a noise effect is also desired.

Graduation Project, Different Approaches in Quantization and Dithering

 48

Hajime56.tga, 91,944 colors are reduced to 32 colors:

Original image

Graduation Project, Different Approaches in Quantization and Dithering

 49

Recursive splitting, nearest neighbor assignment.

Graduation Project, Different Approaches in Quantization and Dithering

 50

Recursive splitting, error diffusion.

Graduation Project, Different Approaches in Quantization and Dithering

 51

Recursive splitting, probabilistic color assignment.

Graduation Project, Different Approaches in Quantization and Dithering

 52

Future Works

Most of the quantization methods tries to minimize the error defined in (2).

They mostly rely on RGB color system. It may be a good idea to choose another

color system and develop new quantization methods for this system. Quantization

can be applied in a coordinate system where differences in each direction are

perceived more or less in the same manner by the eye which is not the case in the

RGB color system.

Particle simulation method can be improved and optimized further by trying

different parameters and attraction/repulsion forces.

Number of operators in valley descending and simulated annealing can be

increased in order to allow large steps in state space thus allowing the system to

get rid of some local minimums more easily.

Instead of using the hashing function one may try to use balanced trees or

similar data structures while building the histogram. Alternatively different hashing

functions probably having larger hashing sets can be tried.

Median cut and recursive splitting algorithms can be compared in terms of

time requirements and quality of solutions.

New functions can be used in probabilistic assignment method such as the

normal distribution.

Graduation Project, Different Approaches in Quantization and Dithering

 53

Glossary

alpha: Region of the pixel pack not used by the display adaptor to calculate the

color, it can be used by the program to store additional information. It is used to

set the pack size to 16 bits or 32 bits.

clustering: Process of dividing a set of values or vectors into local regions of

smaller sizes. In the context of this document we talk about clustering the colors in

the histogram into smaller regions where each region is approximated by a

corresponding color in the palette.

color depth: Number of different colors that can be used. In true color modes,

number of colors in the color space.

color gamut: Total color space, or total range of colors that can be displayed by

the system. For an RGB monitor it is the triangular area inside the red, green, and

blue phosphor’s colors in the CIE chromaticity diagram.

color space: Total range of colors that a system can produce.

dithering: see Quantization and Dithering.

error diffusion: see Quantization and Dithering.

quantization: see Quantization and Dithering.

sigmoid function: The sigmoid function f(x) is 1/(1+exp(-x)) and is used

extensively as a thresholding function in Artificial intelligence due to its

differentiabili ty. As x goes to minus infinity f(x) approaches zero, and as x goes to

infinity it approaches one asymptotically. We can practically say that it is close to

zero and one if x is below -3 or above 3.

Graduation Project, Different Approaches in Quantization and Dithering

 54

References

[1] D. Hearn, M. P. Baker, “Computer Graphics” second edition, Prentice

Hall 1994.

[2] Video Electronics Standards Association, “VESA® Bios Extention

(VBE) Core Functions Standard” , version 2.0, revision 1.1, November

1994. (can be downloaded from VESA®: http://www.vesa.org)

[3] E. Rich, K. Knight, “Artificial Intelligence”, second edition, Mc Graw

Hill 1991.

[4] M. T. Orchard, C. A. Bouman, “Color Quantization of Images” , IEEE

Transactions on Signal Processing, vol 39, no 12, December 1991.

[5] Foley, vanDam, Feiner, Hughes, “Computer Graphics” , second edition,

Addison Wesley, 1990.

Graduation Project, Different Approaches in Quantization and Dithering

 55

Appendix

The program is compiled using Microsoft Visual C++ 4.0 for Win32

environment and requires either Win95, Win NT or Windows 3.1 with Win32

installed to run. It is ANSI C++ compliant and should also work on other

compatible platforms.

The files required to compile the program are:

• Quantize.cpp, main program,

• Set.h, header containing the definition of the class template “Set”,

• Vector.h, header containing the definition of the class template

“Vector” .

These three files are printed in the following pages in the given order.

