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Abstract 

Quantization is the process of reducing the color depth of an image, it 

usually requires a selection of a representative palette. Dithering is the process of 

using the palette as good as possible so as to represent the image with minimum 

loss. Most of the quantization techniques are deterministic and does not consider 

the averaging property of the eye. In this project we will try to: 

• implement existing quantization methods and compare their performance 

on relatively large images having thousands of different colors. 

• develop a new method, a probabilistic assignment of palette colors as an 

alternative to post dithering. 

• develop a new method which will emphasise on selecting distant 

representative colors for the palette during quantization so as to obtain 

better results after dithering. 

 

We will also try to optimize the code to increase scalability: Large and 

more colored images should also be processed in reasonable amounts of time. 

 

 

 

Keywords 

Vector quantization, dithering, error diffusion, probabilistic color 

assignment, clustering, histogram. 
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Introduction 

Due to practical considerations and limitations of display devices, reducing 

the color depth (number of colors) of images become more and more common 

place with the growth of graphical user interfaces and graphics based programs. 

This need arises mainly due to the limited hardware capabilities, or speed 

requirements of  certain applications. With increasing usage of graphical user 

interfaces, optimisations of these methods become more and more important. 

Today’s understanding of human vision suggests that most of the colors 

that can be seen by the eye can be constructed by superposing different amounts of 

three “primary colors” red, green, and blue, ie. we can fool the eye that it is seeing 

naturally occurring colors by simulating them using red, green and blue lights. A 

generally accepted theory suggests that the human eye has three different kinds of 

color receptors, the cones. (There is also a different type of receptors, “rods” 

sensible to intensity). Each color receptor is sensible to a range of frequencies, and 

the three different kinds of receptors are dominantly sensible to the frequencies 

corresponding to around red, green, and blue wavelengths respectively. For 

example a color of wavelength around red light stimulates mostly the red cones, 

then in a small amount the green cones and maybe slightly the blue cones. Human 

eye somehow uses the different amount of stimuli occurring at the three cone types 

and maybe other information to see “colors” . Most of the “naturally occurring 

colors” can be simulated by adjusting the amounts of red, green, blue lights and 

superposing them on each other. Today, most of the raster scan displays and 

television systems use this technique to produce colors. Although some naturally 

occurring colors outside the “color gamut” (see ref. [1], ref. [5]) of the display 

system cannot be simulated, the method works well for human beings though it 

may not work for different perception systems. 
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More information about human vision, and color systems can be found in  

“Computer Graphics”  by Donald Hearn and M. Pauline Baker (ref  [1]). 

Nowadays most of the display adaptors found in both personal computers 

and workstations  are RGB (red, green, blue) system based, and there are two 

different approaches to color modes: 

1)  Paletted approach: up to n colors can coexist (usually n is 16, or 256), 

where each color can be selected from a palette of a larger color 

space.(usually 4, 6, or 8 bits per RGB components). There is a mapping 

table between color numbers and the colors represented; only the color 

number is stored in the frame buffer. 

2)  True color approach: the RGB components of each pixel is written to 

the frame buffer. In this approach the number of different colors that can 

be used is only limited by the image size and the size of color space. All 

of the red, green, and blue components have associated bits in the 

corresponding buffer for each pixel. Here are some of the commonly 

used pixel packing formats in true color modes: 

• 15 bits: 5 bits red, 5 bits green, 5 bits blue, 1 bit alpha. (*) 

• 16 bits: 5 bits red, 6 bits green, 5 bits blue. 

• 24 bits: 8 bits red, 8 bits green, 8 bits blue. 

• 32 bits: 8 bits red, 8 bits green, 8 bits blue, 8 bits alpha. 

(*) this mode is in practice mentioned as 15 bits mode in order to 

differentiate it between 16 bits mode although its fields sum up to 16 bits. 

For Intel™ x86 and higher series, VESA® standards [2] does not restrict 

the size of the fields but most of the hardware manufacturers only implement a 

subset of these modes for different resolutions. 

Although true color modes result in better color depths and ease of 

programming due to direct color manipulation, they are relatively slower and have 
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higher storage requirements than the paletted color modes. Thus most recent 

graphical user interfaces use 256 color paletted mode in order to speed up the 

graphics operations. Moreover limited frame buffer size limits the color depth in 

higher resolutions considerably. Those and similar practical considerations result in 

the need for optimised color depth reduction algorithms. 

Two different approaches in color reduction must be considered: 

1)  The reduction will be made once and then the resultant image will be 

used instead of the original image. In this case of course what we want is 

the best image that we can have in a reasonable amount of time. Some 

examples can be: storing a scanned image in a database by reducing the 

color depth but “not loosing too much” of the original image, preparing 

images or movies to be distributed, printing a final version of a 

document containing graphics. 

2)  The reduction must be made on the fly so that the original image can be 

displayed with the limitations of the current hardware and software. For 

example an image of a large color depth can be stored; each machine can 

display it according to its limitations or time requirements of the 

application. Previewing a large amount of images in a limited amount of 

time, or preparing thumbnails also requires fast reduction algorithms. 

The first case requires finer algorithms although they may require more 

computation power, whereas in the second case what we want is acceptable results 

in a minimum amount of time and computation. 
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Quantization and Dithering 

In the context of this document, quantization is the process of reducing the 

color depth of an image. It can be applied to either reducing a true color image to a 

true color image of lesser color depth which is quite straightforward and done by 

mapping the red green and blue parts of each pixel pack to the corresponding 

target pixel pack format. A more difficult problem occurs when a true color image 

(or an image of a greater palette size) has to be mapped to a limited paletted format 

in which the selection of the colors in the palette greatly influences the results 

obtained. The problem can be formalised as finding the k representative colors that 

will be used to reduce the number of colors, n of the original image so that the 

original image will be preserved as much as possible. 

Dithering is the process of using the palette as good as possible to represent 

the original image with minimum error. All dithering methods are based on the fact 

that the human eye tends to average the colors and intensities of neighbouring 

points if the points are not too distant. Most printing and displaying devices use 

this technique to increase the number of colors or color levels by using extra 

resolution. For example most laser printers do not have grey levels; they only have 

white and black as building blocks, but since the resolution of the devices is big 

enough (typically 300 to 1200 dots per inch) by cleverly placing the black and 

white, illusion of high number of grey levels is achieved. 

Error diffusion is one of the finest dithering methods which is extensively 

used in most graphical packages. It is based on the principle of distributing the 

error made in the quantization of the current pixel to the neighbouring, not yet 

processed pixels hoping that during the quantization of the modified neighbouring 

pixels, the error introduced in the first quantization will be balanced or reduced by 

the averaging property of the eye. We can say that in the error diffusion method, at 

the quantization stage of each pixel, we try to balance the quantization errors done 
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in previous pixels. Error diffusion does not have the anomalies such as repeating 

patterns, artificial edges that occur in using fixed, look-up based dithering methods 

such as halftoning and ordered dither where each pixel of the original image is 

mapped to a box or rectangle of bigger resolution of predetermined pattern (see 

ref. [1] and ref. [5] for more information about dithering and commonly used 

dithering methods). 

In this project we used the error diffusion method developed by Floyd and 

Steinberg in which the difference between the exact color vector and the 

approximated color vector is added to the values of the four neighbors of the pixel 

as follows: 7/16 of the error to the pixel to the right, 3/16 to the pixel below and 

the left, 5/16 to the pixel immediately below, and 1/16 to the pixel below and to the 

right. The image is constructed from upper left position to lower right position line 

by line and the error encountered on each pixel is diffused to the neighboring not 

yet processed pixels as described above. We also developed a probabilistic 

assignment of colors in the palette as an alternative to the error diffusion method. 

In quantization what we want is minimum quantization error. The error 

obviously depends on how much we decrease the color depth and which colors are 

selected to build the palette from which we will try to represent all the colors that 

occur in the original image. Most of current color quantization methods use RGB 

color coordinate system which can be though to be equivalent to Cartesian 

coordinate system where x, y, and z axes are replaced by “red”, “green” , and 

“blue” axes. Generally the error introduced by using color b instead of color a is 

considered to be the square of the “Euclidian” distance between the two points 

corresponding to the colors a and b in the RGB coordinate system which is: 

( . . ) ( . . ) ( . . )a red b red a green b green a blue b blue− + − + −2 2 2  (1) 

Total error encountered in the whole quantization process becomes: 
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(( . . ) ( . . ) ( . . ) )a red b red a green b green a blue b bluei i i i i i
i

n

− + − + −
=
∑ 2 2 2

1

 (2) 

where n is the total number of pixels in the image, ai  is the color vector of 

the ith pixel of the original image and bi is the corresponding color vector in the 

generated image. Since the error function defined as above is differentiable, 

methods using the gradient vector such as gradient decent and artificial neural 

networks can be applied. Some of the methods can be found in “Artificial 

Intelligence” [3] by Rich and Knight. We used this error function to accept or 

reject an operator in valley descending and simulated annealing, and also to 

measure the quality of the solution obtained for each method quantitatively. 

Even if optimal methods are suggested and implemented to minimise the 

quantization error for the above error definition, the results obtained from the 

quantization are not satisfactory if no further processing is applied. The main 

reason for that is smooth transitions in the original image are lost due to 

quantization (clusters of same colors occur), and contours occur at the boundaries 

where a slight change in the original image result in sensible changes in the 

resultant image. 

The image obtained can be improved drastically by applying dithering 

methods which use the averaging property of the eye to reduce the error perceived 

even if, in some cases, the error measured in the above error definition is enlarged. 

Applying a quantization method and then applying a variant of error diffusion is the 

most common color depth reduction method used nowadays. 

Using a stochastic method in choosing which representative color to use for 

a given pixel may also help in avoiding the artificial edges and contouring effects. 

We developed a probabilistic palette assignment method to explore this possibility 

which shall be described later on. 
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Dithering methods use the averaging property of the eye, and the range of 

the colors that can be represented using dithering is improved if the colors are 

distant from each other. This can be visualised easily with an example. Let us 

suppose that we have two colors: white and black, and we want to generate a 

number of grey levels. We can use neighbouring pixels of different proportions of 

white and black pixels to generate grey levels, the more there are black pixels, the 

darker the grey level etc. Obviously we cannot obtain colors darker than the given 

black or lighter than the given white using this method. Traditional quantization 

methods do not take into account that dithering methods work better if the 

representative colors chosen are at the edges of the corresponding “color clusters” 

so that the ranges of colors obtainable using dithering is increased. In fact if we 

have very fine resolutions by using just three colors: red, green and blue we can 

construct all of the colors that can be obtained in the triangle shaped region drawn 

between these three colors in the CIE color coordinate system. This method is used 

in CRTs and television sets. 
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Implementation Details 

The image format that we selected is Truevision’s 24 bits uncompressed 

Targa format which is a truecolor format where each red, green, and blue 

components are assigned 8 bits allowing the storage of any of the pixel pack 

formats proposed by Vesa® without loss if the alpha bits are not used for special 

purposes. This is a widely recognized format and it is fairly easy to convert any 

type of image to this format using graphics packages such as Paint Shop Pro, 

Photo Shop, Corell Draw etc. Although paletted images are grown in size due to 

conversion, and the information about possible number of different colors is lost, 

we can reconstruct the histogram in a couple of seconds thanks to the optimized 

histogram building algorithm that we optimized. 

The Targa format has a header of 18 bytes which includes the x and y sizes 

of the image and some parameters differentiating this format from other Targa 

formats. Each x and y size are assigned 2 bytes allowing up to 65536 by 65536 

images. 

We developed two template classes: Set, and Vector in order to obtain a 

better, flexible, and reliable code. Set is a doubly linked list of a generic element 

type. It has a couple of different constructors, many methods allowing easy 

traversing in both directions, methods to detect errors, seek an element, overloaded 

equalization operator, copy constructor, destructor  etc. Any function can accept 

as both value and reference parameter set and return a set as a function return 

value (these operations require a copy constructor). Moreover any set can be made 

equal to another set which requires many operations that must be done transparent 

to the user of the class: first the destructor is called deallocating the memory 

assigned for all nodes in the first set, then memory is allocated for a new node 

corresponding to each node in the second set and elements are copied by calling 

the equalization operator of the element which can also be sets or any other 
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classes. For example you can have sets of integers, sets of doubles, sets of vectors, 

sets of sets of integers, sets of sets of sets of vectors etc. Thanks to object oriented 

features you can use sets very efficiently without fear of bugs once you are sure 

that the template class is bug free. The Set class requires that its elements have a 

default constructor and a “=” (equalization) operator to exist. The seek method 

requires that “==” (equality checking) operator to be overloaded. We also 

overloaded the “<<” operator of output streams for the set class so that we can 

print sets just like other types. 

This code fragment shows how practical and powerful to use the set class: 

#include <iostream.h> 

#include “Set.h” 

 

typedef Set<int,int> IntSet; // define set of ints using ints as indices. 

IntSet set1(3,1,2,3);   // set1={1,2,3} 

IntSet set2=set1;   // set2={1,2,3} (copy of set1) 

typedef Set<IntSet,int> SetofIntSet // define set of integer sets 

SetofIntSet SET(1,set2);  // it has one element: a copy of set2 

 

void main(void) 

{ 

 int temp; 

 set1.GetFirst();set1.GetNext(); // go to second element 

 set1.SetAt(5);    // set1={1,5,3} 

 SET.Add(set1);   // SET={{1,2,3},{1,5,3}} 

 cout << SET << ‘\n’; 

 for(set1.GetFirst();!set1.Failure();set1.GetNext) 

  cout << set1.GetAt() <<’,‘; 

} 

And here is the output of the code: 

{ {   1,  2,  3 }, {  1,  5,  3 } } 

1,5,3, 
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The vector class is similar in nature, it allows pass by value, pass by 

reference, has default constructor, a destructor and many operators overloaded 

allowing vector addition, subtraction, dot product, product by a double, Euclidian 

distance, norm and many methods such as normalize, getdim, get, set, fill etc. 

Moreover the dimension of the vector can be changed after it is declared. (In fact 

the default constructor constructs a vector of zero dimension, then you can freely 

change the dimension by assigning another vector using equalization operator, or 

by calling another constructor which allow direct initialization with parameters). 

The output stream’s “<<” operation is also overloaded to print vectors. For 

example if “s” is a set of vectors having elements two vectors: (1,2) and (5,3) the 

statement “cout << s;” results in the output { (1,2), (5,3) } .  

There are many assertions in the definitions of both of the classes which 

allows early detection of bugs such as trying to go to the next element when we are 

already at the end or trying to get an element when the set is empty etc. Note that 

these assertions are included to the code only in debug versions, in the final version 

they are ignored and thus do not reduce performance. 

For more information about these class templates see the appendix where 

all of the codes with detailed comments are given or examine the files Set.h and 

Vector.h 

Building the Histogram 

Most of the quantization methods use the histogram of the image. Some of 

them just use the pixels in the original image but by using the histogram instead of 

the image itself drastically improves performance. In some algorithms we just use 

the different colors and in some others we also use the number of occurrences of 

each color. It is fairly easy to construct the histogram of a paletted image where 

standard palette sizes are 16 and 256. For a palette image of 256 colors, it is priori 

known that at most 256 different colors can coexist in the image. We can keep an 



Graduation Project, Different Approaches in Quantization and Dithering 

 

   14 

array of size 256 where each element is set to 0 initially, and for each pixel that we 

process we can increment the color counter in the corresponding array element. 

This method requires only one pass of the image thus has the time complexity O(s) 

where s is the number of pixels in the image which is (x size) * (y size). 

Unfortunately we cannot use this method for truecolor images where the 

number of possible different colors is only limited of the smallest of these two: 

• the number of pixels in the image 

• the number of different colors that can be constructed using the current 

truecolor mode. 

For example for a 24 bits truecolor 640 by 480 image, number of different 

colors that can be obtained is 256x256x256 which is 16,777,216 and number of 

pixels in the image is 640x480 which is 307,200. 

The obvious solution is to initialize a set of histogram nodes containing the 

color and a counter (which counts the occurrence of the color) to an empty set and 

for each pixel in the image, check if its color is already in the histogram; if it is we 

increment the corresponding counter; otherwise we add a new node to the 

histogram set containing the color of the pixel with associated counter set to one. 

The performance of the algorithm depends heavily on the time complexity of  

finding the color in the histogram if it exists, or determining that it does not exists 

if this is a new color. 

A hashing algorithm is developed in order to speed up the process. Each 

color is mapped to 766 different sets according to the sum of its red, green, and 

blue components. And this sets are than linearly searched for occurrence of current 

color. In the best case the algorithm works in time complexity O(s), if all the sets 

contains at most 1 element, and O(s*s), if all colors are hashed to a single set 

where s is the total number of pixels in the image. 
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Application of the hashing method greatly improved the performance of 

building the histogram : as an example the program can construct the histogram of 

an 579 by 824 (477,096 pixels) image having 91,944 different colors in less than 10 

seconds on 150Mhz Cyrix 6x86 which is comparable to existing commercial 

packages. Note that the method works very fine for images having a few thousands 

of different colors due to the relatively small number of hashing sets. 

An alternative approach which may give better results in the case of large 

numbers of different colors can be the usage of balanced trees which will result in  

time complexity of O(s*log(s)). Note that using a large number of hashing sets and 

a good hashing function we can effectively approach complexities of O(s). 

Quantization Methods 

The program developed have six different quantization methods and three 

different palette assignment methods implemented. Thus for each sample of 

quantization methods three different images are constructed and saved to files. The 

parameters are passed from the command line. Here is the help screen which is 

displayed if the number of parameters passed is not sufficient: 

Usage: Quantize source.tga colors samples [methods] 

 

Source is the picture in uncompressed 24 bit targa format. 

Colors is the number of colors in the destination image. 

Samples is the number of samples taken for each method. 

Methods is optional and must be a list of method numbers. 

 

These methods are implemented: 

  1:First K Modes 

  2:K-Means 

  3:Recursive Splitting 

  4:Particle Simulation 

  5:Valley Descending 
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  6:Simulated Annealing 

 

Each sample of the methods will result in three images: 

  1:Nearest Neighbor assigned (no dithering) 

  2:Floyd-Steinberg, error diffused 

  3:Probabilistic assignment 

 

The command: 

quantize picture.tga 32 20 2 3 5 

applies the methods 2, 3, and 5 on the image “picture.tga”, where 20 

samples are taken for each method and the number of colors in the resultant images 

is set to be 32. The program will time each sample, store the error defined in 

equation (2) for each sample and obtain mean time and its standard deviation, mean 

error and its standard deviation for each method. Some of the methods starts with 

random initial values, whereas some of the methods uses random numbers in the 

algorithm allowing each run to result in different images. The standard deviation in 

both time and quality is important. Note that If only one sample is taken, standard 

deviation calculations are bypassed in order to avoid division by zero. 

The quantization methods that we called recursive splitting and particle 

simulation are developed throughout this project. The probabilistic palette 

assignment method is also developed by the author. Although similar methods 

could exist we are unaware of such methods and developed the three methods 

independently. Before explaining each quantization and color assignment methods 

in detail let us give some common assumptions: 

• N is the number of colors in the original image, K is the desired number 

of colors in resultant images. 
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• The histogram is obtained and placed in the set H having entries for each 

color occurring in the image along a counter of occurrence for each 

color. 

• P will be the palette, the set of colors that will be in the resultant image. 

Note that P will also be a set of histogram nodes thus will also have a 

count field which is used in some algorithms. 

First K Modes 

This is a very simple and fast method. It just finds the most occurring K 

colors in the histogram and sets the palette to these K colors. Here is the 

algorithm: 

Add to P the first K histogram nodes in H 

for(each color in the histogram from K+1 to N) { 

 find  c = color having the minimum count value in P, 

 if H.current_color.count is larger than c.count 

  replace c with H.current_color in P; 

} 

K-Means 

This is a hard decision version of k-means clustering algorithm. We start 

with a precalculated or randomly selected palette of K entries. The principle is to 

assign each pixel in the original image to the nearest color in the palette in terms of 

a distance measure which is in general Euclidian distance in RGB coordinate 

system; thus we obtain clusters for each color in the palette. The new value of each 

color in the palette is calculated by averaging the colors of each pixel in the cluster 

corresponding to the palette color. We do not use the whole image but the 
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histogram in order to speed up the process by using the count values kept for each 

color in the histogram. Here is the final algorithm: 

Initialize P to contain K histogram nodes. 

For each K nodes in P allocate space for four counters: avr, avg, avb, 

and count 

1: reset all counters to zero 

For(each node in H){ 

find the nearest color in P in terms of Euclidian distance to the 

current color in H. 

update the counters of corresponding color in P as follows: 

avr=avr+H.current_color.red*H.current_color.count 

avg=avg+H.current_color.green*H.current_color.count 

avb=avb+H.current_color.blue*H.current_color.count 

count=count+H.current_color.count 

} 

calculate the new coordinates of each color in P using the counters 

if any of the palette colors is changed go to 1. 

Note that by using just the histogram instead of the image itself, we did not 

changed the result (except some possible round-off errors) since we weight each 

color in the histogram with its occurrence counter. 



Graduation Project, Different Approaches in Quantization and Dithering 

 

   19 

Recursive Splitting 

In this method we start with a single large set containing the colors in the 

histogram. At each iteration we select the largest set (the set having largest 

cardinality) and split it into two sets until we have K different sets. The splitting 

process consists of finding the component among red, green, and blue components 

having the largest spread (having largest max-min value), we find the average in 

the selected components and remove from current set all entries having selected 

component greater than the average and, put them to a new set. When we have K 

sets we calculate the average color in each set and add an entry to the palette 

having the average color calculated. Here is the algorithm: 

let number of sets be 1 

let P be empty initially 

let the first set contain all colors in the histogram, and all other K-1 sets 

be empty. 

While number of sets is less then K do { 

 find the largest set among current sets, 

 find the component having the largest spread 

 find the average according to the selected component 

remove all entries having component greater than the average 

and put them to a new set. 

} 

Calculate the average color in each set and add a corresponding entry in 

P. 
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Particle Simulation 

In quantization we want minimum quantization error and in dithering we 

want relatively distant colors so as to be able to approximate large amounts of 

intermediate colors by using combinations of the distant colors. Most quantization 

techniques does not consider post dithering thus only tries to minimize the 

quantization error. By using the averaging property of the eye, we can obtain better 

looking images if we try to minimize the quantization error while at the same time 

trying to select distant colors although the error measured in (2) may become 

larger. 

We tried to develop an algorithm which we thought may achieve these 

goals. 

The pixels in the histogram will be represented by points or “particles” 

located according to their color in RGB color space. We shall call these points  

stationary points which will not be moved during the iterations having a mass 

proportional to the number of occurrence of the color. 

Let us assume that there will be n  stationary points each having a 

corresponding weight wi  and we want to approximate the image using k different 

colors. 

k new free points will be added to the system which will be free to move at 

each iteration. The initial location of the points may be chosen from the most 

frequent colors in the histogram or chosen randomly. Each free points will have a 

mass of N/K/alpha where N is the total number of colors in the original image and 

K is the number of colors to which we intend to reduce the image. Alpha is a 

parameter of the system, which is around 10 in current implementation. 

Each free point will be attracted by the stationary points according to the 

weights of the stationary points and will be repelled by other free points. The 
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direction and magnitude of the “net force” on each free point will be calculated and 

the point will be moved according to the calculated values. Attraction and 

repulsion will be inversely proportional to a function of the distance d between the 

points, and directly proportional to the weights of the points. This functions is 

selected to be f(d)=d 2 analogous to Universal Gravitation although other functions 

can also be selected. 

Weights associated to the free points is very important in obtaining good 

results since too much weight may result in divergence and too little weight may 

not satisfy the requirement of distant representative colors. 

The process will stop when a predetermined number of iterations is 

reached. Let us now give the algorithm: 

“Cluster points” are the free points, and “ordinary points” are the static 

ones. Coordinates of ordinary points are of discrete type (0..255) where 

as the coordinates of cluster points are of floating point type. 

maxdelta=10, mindelta=1, deltadec=0.3 

cluster_point_multiplicator=0.01 // these values can be changed 

ordinary_point_multiplicator=0.01 // to obtain different results 

alpha=10 

cluster_point_mass=N/K/alpha 

ordinary_point_mass=1 

randomly initialize the location of cluster_points 

ordinary_points have locations corresponding to the color they represent. 

delta=maxdelta 

while(delta>mindelta) { 
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for each cluster point calculate the netforce1 due to ordinary 

points 

where the contribution of each ordinary point is: (let p be the 

current ordinary point ) 

(cluster_mass*point_mass*p.count/square(Euclidian_distance)) * 

unit direction 

for each cluster point calculate the netforce2 due to other cluster 

points where the contribution of each cluster point is: 

(cluster_mass*cluster_mass/square(Euclidian_distance)) * unit 

direction * (-1) 

for each cluster point let  

netforce = (cluster_point_multiplicator*netforce2 + 

ordinary_point_multiplicator*netforce1) 

Normalize the netforce and multiply it with delta. ( so as to avoid 

big jumps in coordinates ) 

Move each cluster_point in the direction and amount suggested 

by the corresponding netforce. 

If any coordinate of the cluster_points is less than 0.0 set these 

coordinates to 0.0 

If any coordinate of the cluster_points is larger than 255.0 set 

these coordinates to 255.0 

delta=delta-deltadec // delta must be decreased in some way. 

} 

Note that some optimizations can be done such as not to multiplying with 

cluster_mass in the calculation of both netforces, but we left it there to emphasize 
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the analogy to Gravitation. This algorithm is very new and most of the parameters 

can be optimized to obtain better results. The attraction and repulsion formulas can 

be changed; in fact we tried dependence on other powers of distance for one or 

both of the forces. The alpha constant is very crucial to obtain equilibrium: if the 

repulsion are given too much weight the points diverge, if no weight is given the 

nearby initial points tends to converge to the same or very near positions which 

effectively reduce the number of available colors. Once the algorithm is finalized 

optimizations can be started. We obtained satisfactory results in relatively small 

amounts of times (about 50 seconds) for small images (such as 256 by 256 images 

having about 200-250 different colors). The method can be improved to give better 

results for better time complexities. 

Valley Descending and Simulated Annealing 

The simulated annealing is a slightly modified version of the Valley 

Descending algorithm. Both of them uses the error function defined in (2). They 

turned out to be impractical for large images since the calculation of the error 

function is too costly if the number of colors in the original image is high. Most of 

the time is spent in the calculation of the error. Apparently the error function has 

time complexity O(N*K) and requires many floating point operations. Unlike the 

particle simulation method the number of iterations is not bounded, the process 

continues until a local minimum is found. Thus by increasing the number of colors 

in the original image we both increase the time required to calculate the error and 

increase the number of iterations needed to hit a local minimum. 

We start with K entries in the palette either preselected or chosen 

randomly. We tried to select the operators so that minimum change will occur by 

applying an operator. The operators are defined as increasing or decreasing the red, 

green or blue component of a color in the palette by 1 which makes 6 possible 

operators for each color in the palette. Since we have K colors in the palette we 

have at most 6*K different operators to choose from at each iteration (note that if 
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some components of the colors are at the boundaries (0 or 255) the number of 

possible operators are decreased.) Since the error function is costly we mark all the 

tried and rejected operators and chose a new operator randomly among the 

remaining operators until an operator is accepted or all the operators are marked as 

tested in which case a local minimum is found. An operator is accepted if applying 

it, results in smaller error in the case of valley descending, and if exp((initial error-

final error)/temperature) is larger than a selected random number in the case of 

simulated annealing. This function results in acceptance of all of the operators 

resulting in better states and some of the operators resulting in worse states. If 

temperature is high, acceptance probability of  any operator is high, and when 

temperature is low, only small amounts of operators resulting in worse states are 

accepted. We start with a high temperature and at each iteration we decrease the 

temperature, thus “cool the system”. At the beginning simulated annealing process 

works more or less randomly and at the end of the process, when it is cooled 

enough it becomes more or less like valley descending since only good moves are 

accepted most of the time. The simulated annealing has a chance to avoid local 

minimums by the randomness effect in the beginning of the process. 

In the case of simulated annealing the stopping criteria is: 

• temperature should be less than a predetermined threshold, 

• a local minimum should be detected, 

• the best_so_far state (that we update each time a new state is better than 

best_so_far) should not be better than current state. 

If best_so_far is better than the local minimum state, we go back to 

best_so_far state and start a new iteration. Note that at the beginning of each 

iteration all of the possible operators are unmarked. 
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A rule of thumb that is generally applied in simulated annealing states that 

the initial temperature should be selected so that about half of the initial operators 

should be accepted, but in the case of this project selecting such a number is 

impossible due to wide variety of images that are possible requiring selection of 

temperatures for each type of image specifically. Maybe a function of N and K can 

be found which will work for most of the images but it is not easy to find and 

express this function. 

Since valley descending has also a randomness in that with different initial 

seeds it can converge to different local minimums, applying simulated annealing 

thus increasing the time needed to converge considerably is not compensated by 

the slight improvements in the quality of the solution. 

Note that we can improve the results obtained by allowing larger changes 

to be accepted by redefining the operators: allowing more than one components to 

be changed at a time or increasing or decreasing a component by a value larger 

than one. Note that these approaches may decrease the probability of being stuck in 

local minimums but in this case marking rejected operators becomes impractical 

due to large numbers of operators that are possible. 

Palette Color Assignment Methods 

Nearest Neighbor 

In this method for each pixel in the original image, we find the nearest pixel 

in the palette in terms of Euclidian distance. Each pixel is mapped to a single color 

in the palette. This is the simplest palette color assignment method which results in 

loss of smooth transitions and adds artificial edges and contouring effects to the 

resultant image. Thus generally after the quantization process, a dithering method 

is applied such as the Floyd-Steinberg error diffusion method while building the 

resultant image. 
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Error Diffusion 

In this project we used the Floyd-Steinberg error diffusion method for 

dithering as an example of classical methods. The method is described in detail in 

Quantization and Dithering section of this document. 

Probabilistic Assignment 

The probabilistic assignment method is developed during this project and is 

proposed as an alternative to other diffusion algorithms such as the error diffusion 

method used in the program. This algorithm also tends to preserve smooth 

transitions in the original image. 

The method is based on assigning for each pixel, a color from the palette 

stochastically. Once we have a pixel to approximate we calculate a probability of 

being able to represent the color in the resultant image for each color in the palette. 

We used a function of the Euclidian distance between the color to be approximated 

and the colors in the palette in order to assign the probabilities. It is natural to 

assign low probabilities to distant colors and high probabilities to near ones. The 

selection of the function is very crucial in obtaining good results. If the function 

gives equal or comparable weights to both near and distant colors we end up with 

an image looking as if a large random noise were applied on it. If nearby pixels gets 

too much weight the image looks much like the image obtained from nearest 

neighbor assigned image. Thus the selection of the function is very important. 

We selected a sigmoid like function which is: f(x)=1/(1+exp((x-3)*mul)) 

where mul is a parameter that we found out that values around 0.001 gives very 

satisfactory results for every image that we tried. 

Let us give examples of three palette assignment methods: 

The image is a 256 by 256 image having 230 different colors. I selected this 

gray level image which become a standard demonstration image in computer 
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graphics society since this is a relatively small image and all of the methods can be 

applied in reasonable amounts of time. The number of colors is reduced to 16 for 

all of the methods. 
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Quantization method: First K-modes 

   

Original image    Nearest neighbor assignment 

   

Error diffusion    Probabilistic color assignment 
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Quantization method: K-means 

   

Original image    Nearest neighbor assignment 

   

Error diffusion    Probabilistic color assignment 
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Quantization method: Recursive splitting 

   

Original image    Nearest neighbor assignment 

   

Error diffusion    Probabilistic color assignment 
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Quantization method: Particle simulation 

   

Original image    Nearest neighbor assignment 

   

Error diffusion    Probabilistic color assignment 
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Quantization method: Valley descending 

   

Original image    Nearest neighbor assignment 

   

Error diffusion    Probabilistic color assignment 
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Quantization method: Simulated annealing 

   

Original image    Nearest neighbor assignment 

   

Error diffusion    Probabilistic color assignment 
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Conclusions 

For small images having relatively small number of colors all of the 

methods can find a solution in a reasonable amount of time. But for large, truecolor 

images the winner in both performance and quality is the recursive splitting method 

that we developed, whereas the k-means clustering method was the second best. 

The recursive splitting method is the fastest method among the 

implemented methods if we exclude the first k-modes method which is only used to 

initialize the palette of some other algorithms such as valley descending, k-means 

etc. It also resulted in similar quality images as k-means method. Note that the 

recursive splitting is deterministic while k-means algorithm depends on initial 

conditions although the quality of the image were acceptable for all of the different 

initial conditions that are tried. 

The valley descending and simulated annealing methods turned out to be 

inadequate for color quantization as they require large amounts of time and the 

variance in quality is high compared to other methods if we exclude particle 

simulation. Sometimes good results are obtained and sometimes they are stuck to a 

local minimum having a large error. 

The following data is directly taken from the output of the program which 

is run for the image Lena.tga for 16 different colors and for 10 samples of each 

method. The image is 256 by 256 and has 230 different colors. The command used 

to run the program was: quantize lena.tga 16 10 
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S U M M A R Y 
 
Number of samples taken for each method:10 
 
First K Modes 
  Mean time needed    :      1.03125 ms Standard deviation :      0.37702 ms 
  Mean error          : 1.48403e+006    Standard deviation :            0 
 
K-Means 
  Mean time needed    :          141 ms Standard deviation :      37.2529 ms 
  Mean error          :       764189    Standard deviation :      65551.5 
 
Recursive Splitting 
  Mean time needed    :        13.75 ms Standard deviation :      1.31762 ms 
  Mean error          :       403873    Standard deviation :            0 
 
Particle Simulation 
  Mean time needed    :        48940 ms Standard deviation :      26655.2 ms 
  Mean error          : 1.36301e+006    Standard deviation :       582263 
 
Valley Descending 
  Mean time needed    :        30446 ms Standard deviation :      12706.6 ms 
  Mean error          :       903544    Standard deviation :       168933 
 
Simulated Annealing 
  Mean time needed    :        64273 ms Standard deviation :      20283.8 ms 
  Mean error          :       707238    Standard deviation :      99778.6 
 
 

Note that the standard deviation of the error in recursive splitting is zero 

since the method is deterministic. 

We conclude from the data that simulated annealing resulted in better 

images in terms of quantization error than the valley descending method but its 

time requirement was more than twice. We can associate this fact to the better 

behavior of simulated annealing in local minimums especially if the temperature is 

high. 

As can be seen particle simulation resulted in large errors compared to 

other methods but for the case of Lena it took less time than simulated annealing. 

Maybe better results can be obtained by adjusting the parameters of the system in 

the future. 

Let us now compare the performance of recursive splitting algorithm and k-

means clustering for large true color images (we don’t even bother running other 

methods, since they are too slow). We will try three different images: Peppers.tga, 

Boots.tga and Hajime56.tga. 
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Peppers.tga, 86786 colors are reduced to 32 colors: 

 

S U M M A R Y 

 

Number of samples taken for each method:1 

 

K-Means 

  Mean time needed    :       414030 ms Standard deviation :            0 ms 

  Mean error          :  3.8157e+006    Standard deviation :            0 

 

Recursive Splitting 

  Mean time needed    :        54430 ms Standard deviation :            0 ms 

  Mean error          :  4.4386e+006    Standard deviation :            0 

 

Here are the images obtained: 

 

Original image 
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K-means, nearest neighbor assigned. 
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K-means, error diffusion. 
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K-means, probabilistic assignment. 
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Recursive splitting, nearest neighbor assignment. 
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Recursive splitting, error diffusion. 
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Recursive splitting, probabilistic assignment. 
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Boots.tga, 86,786 colors are reduced to 32 colors: 

 

S U M M A R Y 

 

Number of samples taken for each method:1 

 

K-Means 

  Mean time needed    :       354660 ms Standard deviation :            0 ms 

  Mean error          : 4.10924e+006    Standard deviation :            0 

 

Recursive Splitting 

  Mean time needed    :        73610 ms Standard deviation :            0 ms 

  Mean error          : 4.91863e+006    Standard deviation :            0 

 

 

 

 

 

Original image. 
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K-means, error diffusion. 
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K-means, probabilistic. 
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Recursive splitting, error diffusion. 
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Recursive splitting, probabilistic. 

 

The probabilistic color assignment method also resulted in images 

comparable to other dithering methods in quality, it suppresses contouring effects 

and resulted in images that look like the original image on top of which a small 

amount of random noise is added. It can be used as an alternative to the current 

dithering methods if such a noise effect is also desired. 
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Hajime56.tga, 91,944 colors are reduced to 32 colors: 

 

Original image 
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Recursive splitting, nearest neighbor assignment. 
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Recursive splitting, error diffusion. 
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Recursive splitting, probabilistic color assignment. 
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Future Works 

Most of the quantization methods tries to minimize the error defined in (2). 

They mostly rely on RGB color system. It may be a good idea to choose another 

color system and develop new quantization methods for this system. Quantization 

can be applied in a coordinate system where differences in each direction are 

perceived more or less in the same manner by the eye which is not the case in the 

RGB color system. 

Particle simulation method can be improved and optimized further by trying 

different parameters and attraction/repulsion forces. 

Number of operators in valley descending and simulated annealing can be 

increased in order to allow large steps in state space thus allowing the system to 

get rid of some local minimums more easily. 

Instead of using the hashing function one may try to use balanced trees or 

similar data structures while building the histogram. Alternatively different hashing 

functions probably having larger hashing sets can be tried. 

Median cut and recursive splitting algorithms can be compared in terms of 

time requirements and quality of solutions. 

New functions can be used in probabilistic assignment method such as the 

normal distribution. 
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Glossary 

alpha: Region of the pixel pack not used by the display adaptor to calculate the 

color, it can be used by the program to store additional information. It is used to 

set the pack size to 16 bits or 32 bits. 

clustering: Process of dividing a set of values or vectors into local regions of 

smaller sizes. In the context of this document we talk about clustering the colors in 

the histogram into smaller regions where each region is approximated by a 

corresponding color in the palette. 

color depth: Number of different colors that can be used. In true color modes, 

number of colors in the color space. 

color gamut: Total color space, or total range of colors that can be displayed by 

the system. For an RGB monitor it is the triangular area inside the red, green, and 

blue phosphor’s colors in the CIE chromaticity diagram. 

color space: Total range of colors that a system can produce. 

dithering: see Quantization and Dithering. 

error diffusion: see Quantization and Dithering. 

quantization: see Quantization and Dithering. 

sigmoid function: The sigmoid function f(x) is 1/(1+exp(-x)) and is used 

extensively as a thresholding function in Artificial intelligence due to its 

differentiabili ty. As x goes to minus infinity f(x) approaches zero, and as x goes to 

infinity it approaches one asymptotically. We can practically say that it is close to 

zero and one if x is below -3 or above 3. 
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Appendix 

The program is compiled using Microsoft Visual C++ 4.0 for Win32 

environment and requires either Win95, Win NT or Windows 3.1 with Win32 

installed to run. It is ANSI C++ compliant and should also work on other 

compatible platforms. 

The files required to compile the program are: 

• Quantize.cpp, main program, 

• Set.h, header containing the definition of the class template “Set”, 

• Vector.h, header containing the definition of the class template 

“Vector” . 

These three files are printed in the following pages in the given order. 


